Use TiFlash MPP Mode

This document introduces the MPP mode of TiFlash and how to use it.

TiFlash supports using the MPP mode to execute queries, which introduces cross-node data exchange (data shuffle process) into the computation. TiDB automatically determines whether to select the MPP mode using the optimizer's cost estimation. You can change the selection strategy by modifying the values of tidb_allow_mpp and tidb_enforce_mpp.

Control whether to select the MPP mode

The tidb_allow_mpp variable controls whether TiDB can select the MPP mode to execute queries. The tidb_enforce_mpp variable controls whether the optimizer's cost estimation is ignored and the MPP mode of TiFlash is forcibly used to execute queries.

The results corresponding to all values of these two variables are as follows:

tidb_allow_mpp=offtidb_allow_mpp=on (by default)
tidb_enforce_mpp=off (by default)The MPP mode is not used.The optimizer selects the MPP mode based on cost estimation. (by default)
tidb_enforce_mpp=onThe MPP mode is not used.TiDB ignores the cost estimation and selects the MPP mode.

For example, if you do not want to use the MPP mode, you can execute the following statements:

set @@session.tidb_allow_mpp=0;

If you want TiDB's cost-based optimizer to automatically decide whether to use the MPP mode (by default), you can execute the following statements:

set @@session.tidb_allow_mpp=1; set @@session.tidb_enforce_mpp=0;

If you want TiDB to ignore the optimizer's cost estimation and to forcibly select the MPP mode, you can execute the following statements:

set @@session.tidb_allow_mpp=1; set @@session.tidb_enforce_mpp=1;

The initial value of the tidb_enforce_mpp session variable is equal to the enforce-mpp configuration value of this tidb-server instance (which is false by default). If multiple tidb-server instances in a TiDB cluster only perform analytical queries and you want to make sure that the MPP mode is used on these instances, you can change their enforce-mpp configuration values to true.

Algorithm support for the MPP mode

The MPP mode supports these physical algorithms: Broadcast Hash Join, Shuffled Hash Join, Shuffled Hash Aggregation, Union All, TopN, and Limit. The optimizer automatically determines which algorithm to be used in a query. To check the specific query execution plan, you can execute the EXPLAIN statement. If the result of the EXPLAIN statement shows ExchangeSender and ExchangeReceiver operators, it indicates that the MPP mode has taken effect.

The following statement takes the table structure in the TPC-H test set as an example:

explain select count(*) from customer c join nation n on c.c_nationkey=n.n_nationkey; +------------------------------------------+------------+--------------+---------------+----------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------------------+------------+--------------+---------------+----------------------------------------------------------------------------+ | HashAgg_23 | 1.00 | root | | funcs:count(Column#16)->Column#15 | | └─TableReader_25 | 1.00 | root | | data:ExchangeSender_24 | | └─ExchangeSender_24 | 1.00 | mpp[tiflash] | | ExchangeType: PassThrough | | └─HashAgg_12 | 1.00 | mpp[tiflash] | | funcs:count(1)->Column#16 | | └─HashJoin_17 | 3000000.00 | mpp[tiflash] | | inner join, equal:[eq(tpch.nation.n_nationkey, tpch.customer.c_nationkey)] | | ├─ExchangeReceiver_21(Build) | 25.00 | mpp[tiflash] | | | | │ └─ExchangeSender_20 | 25.00 | mpp[tiflash] | | ExchangeType: Broadcast | | │ └─TableFullScan_18 | 25.00 | mpp[tiflash] | table:n | keep order:false | | └─TableFullScan_22(Probe) | 3000000.00 | mpp[tiflash] | table:c | keep order:false | +------------------------------------------+------------+--------------+---------------+----------------------------------------------------------------------------+ 9 rows in set (0.00 sec)

In the example execution plan, the ExchangeReceiver and ExchangeSender operators are included. The execution plan indicates that after the nation table is read, the ExchangeSender operator broadcasts the table to each node, the HashJoin and HashAgg operations are performed on the nation table and the customer table, and then the results are returned to TiDB.

TiFlash provides the following two global/session variables to control whether to use Broadcast Hash Join:

  • tidb_broadcast_join_threshold_size: The unit of the value is bytes. If the table size (in the unit of bytes) is less than the value of the variable, the Broadcast Hash Join algorithm is used. Otherwise, the Shuffled Hash Join algorithm is used.
  • tidb_broadcast_join_threshold_count: The unit of the value is rows. If the objects of the join operation belong to a subquery, the optimizer cannot estimate the size of the subquery result set, so the size is determined by the number of rows in the result set. If the estimated number of rows in the subquery is less than the value of this variable, the Broadcast Hash Join algorithm is used. Otherwise, the Shuffled Hash Join algorithm is used.

Access partitioned tables in the MPP mode

To access partitioned tables in the MPP mode, you need to enable dynamic pruning mode first.

Example:

mysql> DROP TABLE if exists test.employees; Query OK, 0 rows affected, 1 warning (0.00 sec) mysql> CREATE TABLE test.employees (id int(11) NOT NULL, fname varchar(30) DEFAULT NULL, lname varchar(30) DEFAULT NULL, hired date NOT NULL DEFAULT '1970-01-01', separated date DEFAULT '9999-12-31', job_code int DEFAULT NULL, store_id int NOT NULL) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin PARTITION BY RANGE (store_id) (PARTITION p0 VALUES LESS THAN (6), PARTITION p1 VALUES LESS THAN (11), PARTITION p2 VALUES LESS THAN (16), PARTITION p3 VALUES LESS THAN (MAXVALUE)); Query OK, 0 rows affected (0.10 sec) mysql> ALTER table test.employees SET tiflash replica 1; Query OK, 0 rows affected (0.09 sec) mysql> SET tidb_partition_prune_mode=static; Query OK, 0 rows affected (0.00 sec) mysql> explain SELECT count(*) FROM test.employees; +----------------------------------+----------+-------------------+-------------------------------+-----------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+----------+-------------------+-------------------------------+-----------------------------------+ | HashAgg_18 | 1.00 | root | | funcs:count(Column#10)->Column#9 | | └─PartitionUnion_20 | 4.00 | root | | | | ├─StreamAgg_35 | 1.00 | root | | funcs:count(Column#12)->Column#10 | | │ └─TableReader_36 | 1.00 | root | | data:StreamAgg_26 | | │ └─StreamAgg_26 | 1.00 | batchCop[tiflash] | | funcs:count(1)->Column#12 | | │ └─TableFullScan_34 | 10000.00 | batchCop[tiflash] | table:employees, partition:p0 | keep order:false, stats:pseudo | | ├─StreamAgg_52 | 1.00 | root | | funcs:count(Column#14)->Column#10 | | │ └─TableReader_53 | 1.00 | root | | data:StreamAgg_43 | | │ └─StreamAgg_43 | 1.00 | batchCop[tiflash] | | funcs:count(1)->Column#14 | | │ └─TableFullScan_51 | 10000.00 | batchCop[tiflash] | table:employees, partition:p1 | keep order:false, stats:pseudo | | ├─StreamAgg_69 | 1.00 | root | | funcs:count(Column#16)->Column#10 | | │ └─TableReader_70 | 1.00 | root | | data:StreamAgg_60 | | │ └─StreamAgg_60 | 1.00 | batchCop[tiflash] | | funcs:count(1)->Column#16 | | │ └─TableFullScan_68 | 10000.00 | batchCop[tiflash] | table:employees, partition:p2 | keep order:false, stats:pseudo | | └─StreamAgg_86 | 1.00 | root | | funcs:count(Column#18)->Column#10 | | └─TableReader_87 | 1.00 | root | | data:StreamAgg_77 | | └─StreamAgg_77 | 1.00 | batchCop[tiflash] | | funcs:count(1)->Column#18 | | └─TableFullScan_85 | 10000.00 | batchCop[tiflash] | table:employees, partition:p3 | keep order:false, stats:pseudo | +----------------------------------+----------+-------------------+-------------------------------+-----------------------------------+ 18 rows in set (0,00 sec) mysql> SET tidb_partition_prune_mode=dynamic; Query OK, 0 rows affected (0.00 sec) mysql> explain SELECT count(*) FROM test.employees; +------------------------------+----------+--------------+-----------------+---------------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------+----------+--------------+-----------------+---------------------------------------------------------+ | HashAgg_17 | 1.00 | root | | funcs:count(Column#11)->Column#9 | | └─TableReader_19 | 1.00 | root | partition:all | data:ExchangeSender_18 | | └─ExchangeSender_18 | 1.00 | mpp[tiflash] | | ExchangeType: PassThrough | | └─HashAgg_8 | 1.00 | mpp[tiflash] | | funcs:count(1)->Column#11 | | └─TableFullScan_16 | 10000.00 | mpp[tiflash] | table:employees | keep order:false, stats:pseudo, PartitionTableScan:true | +------------------------------+----------+--------------+-----------------+---------------------------------------------------------+ 5 rows in set (0,00 sec)

Known issues of MPP

In the current version, TiFlash uses the start_ts of a query as the unique key of the query. In most cases, the start_ts of each query can uniquely identify a query, but in the following cases, different queries have the same start_ts:

  • All queries in the same transaction have the same start_ts.
  • When you use tidb_snapshot to read data at a specific historical time point, the same time point is manually specified.
  • When Stale Read is enabled, the same time point is manually specified.

When start_ts cannot uniquely represent the MPP query, if TiFlash detects that different queries have the same start_ts at a given time, TiFlash might report an error. Typical error cases are as follows:

  • When multiple queries with the same start_ts are sent to TiFlash at the same time, you might encounter the task has been registered error.
  • When multiple simple queries with LIMIT are executed continuously in the same transaction, once the LIMIT condition is met, TiDB sends a cancel request to TiFlash to cancel the query. This request also uses start_ts to identify the query to be canceled. If there are other queries with the same start_ts in TiFlash, these queries might be canceled by mistake. An example of this issue can be found in #43426.

This issue is fixed in TiDB v6.6.0. It is recommended to use the latest LTS version.

Was this page helpful?