Deploy TiDB on GCP GKE

This document describes how to deploy a GCP Google Kubernetes Engine (GKE) cluster and deploy a TiDB cluster on GCP GKE.

To deploy TiDB Operator and the TiDB cluster in a self-managed Kubernetes environment, refer to Deploy TiDB Operator and Deploy TiDB in General Kubernetes.

Prerequisites

Before deploying a TiDB cluster on GCP GKE, make sure the following requirements are satisfied:

  • Install Helm 3: used for deploying TiDB Operator.

  • Install gcloud: a command-line tool used for creating and managing GCP services.

  • Complete the operations in the Before you begin section of GKE Quickstart.

    This guide includes the following contents:

    • Enable Kubernetes APIs
    • Configure enough quota
  • Instance types: to gain better performance, the following is recommended:
    • PD nodes: n2-standard-4
    • TiDB nodes: n2-standard-16
    • TiKV or TiFlash nodes: n2-standard-16
  • Storage: For TiKV or TiFlash, it is recommended to use pd-ssd disk type.

Configure the GCP service

Configure your GCP project and default region:

gcloud config set core/project <gcp-project> gcloud config set compute/region <gcp-region>

Create a GKE cluster and node pool

  1. Create a GKE cluster and a default node pool:

    gcloud container clusters create tidb --region us-east1 --machine-type n1-standard-4 --num-nodes=1
    • The command above creates a regional cluster.
    • The --num-nodes=1 option indicates that one node is created in each zone. So if there are three zones in the region, there are three nodes in total, which ensures high availability.
    • It is recommended to use regional clusters in production environments. For other types of clusters, refer to Types of GKE clusters.
    • The command above creates a cluster in the default network. If you want to specify a network, use the --network/subnet option. For more information, refer to Creating a regional cluster.
  2. Create separate node pools for PD, TiKV, and TiDB:

    gcloud container node-pools create pd --cluster tidb --machine-type n2-standard-4 --num-nodes=1 \ --node-labels=dedicated=pd --node-taints=dedicated=pd:NoSchedule gcloud container node-pools create tikv --cluster tidb --machine-type n2-highmem-8 --num-nodes=1 \ --node-labels=dedicated=tikv --node-taints=dedicated=tikv:NoSchedule gcloud container node-pools create tidb --cluster tidb --machine-type n2-standard-8 --num-nodes=1 \ --node-labels=dedicated=tidb --node-taints=dedicated=tidb:NoSchedule

    The process might take a few minutes.

Configure StorageClass

After the GKE cluster is created, the cluster contains three StorageClasses of different disk types.

  • standard: pd-standard disk type (default)
  • standard-rwo: pd-balanced disk type
  • premium-rwo: pd-ssd disk type (recommended)

To improve I/O write performance, it is recommended to configure nodelalloc and noatime in the mountOptions field of the StorageClass resource. For details, see TiDB Environment and System Configuration Check.

It is recommended to use the default pd-ssd storage class premium-rwo or to set up a customized storage class:

kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: pd-custom provisioner: kubernetes.io/gce-pd volumeBindingMode: WaitForFirstConsumer allowVolumeExpansion: true parameters: type: pd-ssd mountOptions: - nodelalloc,noatime

Use local storage

For the production environment, use zonal persistent disks.

If you need to simulate bare-metal performance, some GCP instance types provide additional local store volumes. You can choose such instances for the TiKV node pool to achieve higher IOPS and lower latency.

  1. Create a node pool with local storage for TiKV:

    gcloud container node-pools create tikv --cluster tidb --machine-type n2-highmem-8 --num-nodes=1 --local-ssd-count 1 \ --node-labels dedicated=tikv --node-taints dedicated=tikv:NoSchedule

    If the TiKV node pool already exists, you can either delete the old pool and then create a new one, or change the pool name to avoid conflict.

  2. Deploy the local volume provisioner.

    You need to use the local-volume-provisioner to discover and manage the local storage. Executing the following command deploys and creates a local-storage storage class:

    kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-operator/v1.2.7/manifests/gke/local-ssd-provision/local-ssd-provision.yaml
  3. Use the local storage.

    After the steps above, the local volume provisioner can discover all the local NVMe SSD disks in the cluster.

    Modify tikv.storageClassName in the tidb-cluster.yaml file to local-storage.

Deploy TiDB Operator

To deploy TiDB Operator on GKE, refer to deploy TiDB Operator.

Deploy a TiDB cluster and the monitoring component

This section describes how to deploy a TiDB cluster and its monitoring component on GCP GKE.

Create namespace

To create a namespace to deploy the TiDB cluster, run the following command:

kubectl create namespace tidb-cluster

Deploy

First, download the sample TidbCluster and TidbMonitor configuration files:

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.2.7/examples/gcp/tidb-cluster.yaml && \ curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.2.7/examples/gcp/tidb-monitor.yaml

Refer to configure the TiDB cluster to further customize and configure the CR before applying.

To deploy the TidbCluster and TidbMonitor CR in the GKE cluster, run the following command:

kubectl create -f tidb-cluster.yaml -n tidb-cluster && \ kubectl create -f tidb-monitor.yaml -n tidb-cluster

After the yaml file above is applied to the Kubernetes cluster, TiDB Operator creates the desired TiDB cluster and its monitoring component according to the yaml file.

View the cluster status

To view the status of the starting TiDB cluster, run the following command:

kubectl get pods -n tidb-cluster

When all the Pods are in the Running or Ready state, the TiDB cluster is successfully started. For example:

NAME READY STATUS RESTARTS AGE tidb-discovery-5cb8474d89-n8cxk 1/1 Running 0 47h tidb-monitor-6fbcc68669-dsjlc 3/3 Running 0 47h tidb-pd-0 1/1 Running 0 47h tidb-pd-1 1/1 Running 0 46h tidb-pd-2 1/1 Running 0 46h tidb-tidb-0 2/2 Running 0 47h tidb-tidb-1 2/2 Running 0 46h tidb-tikv-0 1/1 Running 0 47h tidb-tikv-1 1/1 Running 0 47h tidb-tikv-2 1/1 Running 0 47h

Access the TiDB database

After you deploy a TiDB cluster, you can access the TiDB database via MySQL client.

Prepare a bastion host

The LoadBalancer created for your TiDB cluster is an intranet LoadBalancer. You can create a bastion host in the cluster VPC to access the database.

gcloud compute instances create bastion \ --machine-type=n1-standard-4 \ --image-project=centos-cloud \ --image-family=centos-7 \ --zone=${your-region}-a

Install the MySQL client and connect

After the bastion host is created, you can connect to the bastion host via SSH and access the TiDB cluster via the MySQL client.

  1. Connect to the bastion host via SSH:

    gcloud compute ssh tidb@bastion
  2. Install the MySQL client:

    sudo yum install mysql -y
  3. Connect the client to the TiDB cluster:

    mysql -h ${tidb-nlb-dnsname} -P 4000 -u root

    ${tidb-nlb-dnsname} is the LoadBalancer IP of the TiDB service. You can view the IP in the EXTERNAL-IP field of the kubectl get svc basic-tidb -n tidb-cluster execution result.

    For example:

    $ mysql -h 10.128.15.243 -P 4000 -u root Welcome to the MariaDB monitor. Commands end with ; or \g. Your MySQL connection id is 7823 Server version: 5.7.25-TiDB-v4.0.4 TiDB Server (Apache License 2.0) Community Edition, MySQL 5.7 compatible Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. MySQL [(none)]> show status; +--------------------+--------------------------------------+ | Variable_name | Value | +--------------------+--------------------------------------+ | Ssl_cipher | | | Ssl_cipher_list | | | Ssl_verify_mode | 0 | | Ssl_version | | | ddl_schema_version | 22 | | server_id | 717420dc-0eeb-4d4a-951d-0d393aff295a | +--------------------+--------------------------------------+ 6 rows in set (0.01 sec)

Access the Grafana monitoring dashboard

Obtain the LoadBalancer IP of Grafana:

kubectl -n tidb-cluster get svc basic-grafana

For example:

$ kubectl -n tidb-cluster get svc basic-grafana NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE basic-grafana LoadBalancer 10.15.255.169 34.123.168.114 3000:30657/TCP 35m

In the output above, the EXTERNAL-IP column is the LoadBalancer IP.

You can access the ${grafana-lb}:3000 address using your web browser to view monitoring metrics. Replace ${grafana-lb} with the LoadBalancer IP.

Upgrade

To upgrade the TiDB cluster, execute the following command:

kubectl patch tc basic -n tidb-cluster --type merge -p '{"spec":{"version":"${version}"}}`.

The upgrade process does not finish immediately. You can watch the upgrade progress by executing kubectl get pods -n tidb-cluster --watch.

Scale out

Before scaling out the cluster, you need to scale out the corresponding node pool so that the new instances have enough resources for operation.

This section describes how to scale out the EKS node group and TiDB components.

Scale out GKE node group

The following example shows how to scale out the tikv node pool of the tidb cluster to 6 nodes:

gcloud container clusters resize tidb --node-pool tikv --num-nodes 2

Scale out TiDB components

After that, execute kubectl edit tc basic -n tidb-cluster and modify each component's replicas to the desired number of replicas. The scaling-out process is then completed.

For more information on managing node pools, refer to GKE Node pools.

Deploy TiFlash and TiCDC

TiFlash is the columnar storage extension of TiKV.

TiCDC is a tool for replicating the incremental data of TiDB by pulling TiKV change logs.

The two components are not required in the deployment. This section shows a quick start example.

Create new node pools

  • Create a node pool for TiFlash:

    gcloud container node-pools create tiflash --cluster tidb --machine-type n1-highmem-8 --num-nodes=1 \ --node-labels dedicated=tiflash --node-taints dedicated=tiflash:NoSchedule
  • Create a node pool for TiCDC:

    gcloud container node-pools create ticdc --cluster tidb --machine-type n1-standard-4 --num-nodes=1 \ --node-labels dedicated=ticdc --node-taints dedicated=ticdc:NoSchedule

Configure and deploy

  • To deploy TiFlash, configure spec.tiflash in tidb-cluster.yaml. For example:

    spec: ... tiflash: baseImage: pingcap/tiflash maxFailoverCount: 0 replicas: 1 storageClaims: - resources: requests: storage: 100Gi nodeSelector: dedicated: tiflash tolerations: - effect: NoSchedule key: dedicated operator: Equal value: tiflash

    To configure other parameters, refer to Configure a TiDB Cluster.

  • To deploy TiCDC, configure spec.ticdc in tidb-cluster.yaml. For example:

    spec: ... ticdc: baseImage: pingcap/ticdc replicas: 1 nodeSelector: dedicated: ticdc tolerations: - effect: NoSchedule key: dedicated operator: Equal value: ticdc

    Modify replicas according to your needs.

Finally, execute kubectl -n tidb-cluster apply -f tidb-cluster.yaml to update the TiDB cluster configuration.

For detailed CR configuration, refer to API references and Configure a TiDB Cluster.

Configure TiDB monitoring

For more information, see Deploy monitoring and alerts for a TiDB cluster.

Collect logs

System and application logs can be useful for troubleshooting issues and automating operations. By default, TiDB components output logs to the container's stdout and stderr, and log rotation is automatically performed based on the container runtime environment. When a Pod restarts, container logs will be lost. To prevent log loss, it is recommended to Collect logs of TiDB and its related components.

Was this page helpful?