MPP モードでの Explain ステートメント

TiDB は、 MPPモードを使用したクエリの実行をサポートしています。 MPP モードでは、TiDB オプティマイザーは MPP の実行プランを生成します。 MPP モードは、 TiFlashにレプリカがあるテーブルでのみ使用できることに注意してください。

このドキュメントの例は、次のサンプル データに基づいています。

CREATE TABLE t1 (id int, value int); INSERT INTO t1 values(1,2),(2,3),(1,3); ALTER TABLE t1 set tiflash replica 1; ANALYZE TABLE t1; SET tidb_allow_mpp = 1;

MPP クエリ フラグメントと MPP タスク

MPP モードでは、クエリは論理的に複数のクエリ フラグメントにスライスされます。次のステートメントを例として取り上げます。

EXPLAIN SELECT COUNT(*) FROM t1 GROUP BY id;

このクエリは、MPP モードでは 2 つのフラグメントに分割されます。 1 つは第 1 段階の集計用で、もう 1 つは第 2 段階の集計用であり、最終的な集計にも使用されます。このクエリが実行されると、各クエリ フラグメントが 1 つ以上の MPP タスクにインスタンス化されます。

交換業者

ExchangeReceiverExchangeSender 、MPP 実行プランに固有の 2 つの交換演算子です。 ExchangeReceiver演算子は下流クエリ フラグメントからデータを読み取り、 ExchangeSender演算子は下流クエリ フラグメントから上流クエリ フラグメントにデータを送信します。 MPP モードでは、各 MPP クエリ フラグメントのルート演算子はExchangeSenderです。これは、クエリ フラグメントがExchangeSender子で区切られることを意味します。

以下は、単純な MPP 実行プランです。

EXPLAIN SELECT COUNT(*) FROM t1 GROUP BY id;
+------------------------------------+---------+-------------------+---------------+----------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------------+---------+-------------------+---------------+----------------------------------------------------+ | TableReader_31 | 2.00 | root | | data:ExchangeSender_30 | | └─ExchangeSender_30 | 2.00 | batchCop[tiflash] | | ExchangeType: PassThrough | | └─Projection_26 | 2.00 | batchCop[tiflash] | | Column#4 | | └─HashAgg_27 | 2.00 | batchCop[tiflash] | | group by:test.t1.id, funcs:sum(Column#7)->Column#4 | | └─ExchangeReceiver_29 | 2.00 | batchCop[tiflash] | | | | └─ExchangeSender_28 | 2.00 | batchCop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id | | └─HashAgg_9 | 2.00 | batchCop[tiflash] | | group by:test.t1.id, funcs:count(1)->Column#7 | | └─TableFullScan_25 | 3.00 | batchCop[tiflash] | table:t1 | keep order:false | +------------------------------------+---------+-------------------+---------------+----------------------------------------------------+

上記の実行プランには、次の 2 つのクエリ フラグメントが含まれています。

  • 1 つ目は[TableFullScan_25, HashAgg_9, ExchangeSender_28]で、主に第 1 段階の集計を担当します。
  • 2 番目は[ExchangeReceiver_29, HashAgg_27, Projection_26, ExchangeSender_30]で、主に第 2 段階の集計を担当します。

ExchangeSender演算子のoperator info列は交換タイプ情報を示します。現在、交換タイプは 3 つあります。以下を参照してください。

  • HashPartition: ExchangeSenderオペレーターはまずハッシュ値に従ってデータを分割し、次に上流 MPP タスクのExchangeReceiverオペレーターにデータを分配します。この交換タイプは、ハッシュ集計およびシャッフル ハッシュ結合アルゴリズムによく使用されます。
  • ブロードキャスト: ExchangeSenderオペレーターは、ブロードキャストを通じて上流の MPP タスクにデータを配布します。この交換タイプはブロードキャスト参加によく使用されます。
  • パススルー: ExchangeSenderオペレーターは、ブロードキャスト タイプとは異なる唯一の上流 MPP タスクにデータを送信します。この交換タイプは、データを TiDB に返すときによく使用されます。

この実行プランの例では、オペレーターExchangeSender_28の交換タイプは HashPartition であり、ハッシュ集計アルゴリズムを実行することを意味します。オペレーターExchangeSender_30の交換タイプは PassThrough です。これは、データを TiDB に返すために使用されることを意味します。

MPP は結合操作にもよく適用されます。 TiDB の MPP モードは、次の 2 つの結合アルゴリズムをサポートします。

  • Shuffle Hash Join: HashPartition 交換タイプを使用して、結合操作からのデータ入力をシャッフルします。次に、上流の MPP タスクが同じパーティション内のデータを結合します。
  • ブロードキャスト結合: 結合操作で小さなテーブルのデータを各ノードにブロードキャストし、その後各ノードがデータを個別に結合します。

以下は、シャッフル ハッシュ結合の一般的な実行プランです。

SET tidb_broadcast_join_threshold_count=0; SET tidb_broadcast_join_threshold_size=0; EXPLAIN SELECT COUNT(*) FROM t1 a JOIN t1 b ON a.id = b.id;
+----------------------------------------+---------+--------------+---------------+----------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------------+---------+--------------+---------------+----------------------------------------------------+ | StreamAgg_14 | 1.00 | root | | funcs:count(1)->Column#7 | | └─TableReader_48 | 9.00 | root | | data:ExchangeSender_47 | | └─ExchangeSender_47 | 9.00 | cop[tiflash] | | ExchangeType: PassThrough | | └─HashJoin_44 | 9.00 | cop[tiflash] | | inner join, equal:[eq(test.t1.id, test.t1.id)] | | ├─ExchangeReceiver_19(Build) | 6.00 | cop[tiflash] | | | | │ └─ExchangeSender_18 | 6.00 | cop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id | | │ └─Selection_17 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) | | │ └─TableFullScan_16 | 6.00 | cop[tiflash] | table:a | keep order:false | | └─ExchangeReceiver_23(Probe) | 6.00 | cop[tiflash] | | | | └─ExchangeSender_22 | 6.00 | cop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id | | └─Selection_21 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) | | └─TableFullScan_20 | 6.00 | cop[tiflash] | table:b | keep order:false | +----------------------------------------+---------+--------------+---------------+----------------------------------------------------+ 12 rows in set (0.00 sec)

上記の実行計画では次のようになります。

  • クエリ フラグメント[TableFullScan_20, Selection_21, ExchangeSender_22]テーブル b からデータを読み取り、データを上流の MPP タスクにシャッフルします。
  • クエリ フラグメント[TableFullScan_16, Selection_17, ExchangeSender_18]はテーブル a からデータを読み取り、データを上流の MPP タスクにシャッフルします。
  • クエリ フラグメント[ExchangeReceiver_19, ExchangeReceiver_23, HashJoin_44, ExchangeSender_47]はすべてのデータを結合し、TiDB に返します。

ブロードキャスト結合の一般的な実行計画は次のとおりです。

EXPLAIN SELECT COUNT(*) FROM t1 a JOIN t1 b ON a.id = b.id;
+----------------------------------------+---------+--------------+---------------+------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------------+---------+--------------+---------------+------------------------------------------------+ | StreamAgg_15 | 1.00 | root | | funcs:count(1)->Column#7 | | └─TableReader_47 | 9.00 | root | | data:ExchangeSender_46 | | └─ExchangeSender_46 | 9.00 | cop[tiflash] | | ExchangeType: PassThrough | | └─HashJoin_43 | 9.00 | cop[tiflash] | | inner join, equal:[eq(test.t1.id, test.t1.id)] | | ├─ExchangeReceiver_20(Build) | 6.00 | cop[tiflash] | | | | │ └─ExchangeSender_19 | 6.00 | cop[tiflash] | | ExchangeType: Broadcast | | │ └─Selection_18 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) | | │ └─TableFullScan_17 | 6.00 | cop[tiflash] | table:a | keep order:false | | └─Selection_22(Probe) | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) | | └─TableFullScan_21 | 6.00 | cop[tiflash] | table:b | keep order:false | +----------------------------------------+---------+--------------+---------------+------------------------------------------------+

上記の実行計画では次のようになります。

  • クエリ フラグメント[TableFullScan_17, Selection_18, ExchangeSender_19]は、小さなテーブル (テーブル a) からデータを読み取り、そのデータを大きなテーブル (テーブル b) のデータを含む各ノードにブロードキャストします。
  • クエリ フラグメント[TableFullScan_21, Selection_22, ExchangeReceiver_20, HashJoin_43, ExchangeSender_46]はすべてのデータを結合し、TiDB に返します。

MPP モードのEXPLAIN ANALYZEステートメント

EXPLAIN ANALYZEステートメントはEXPLAINに似ていますが、実行時情報も出力します。

以下は、単純なEXPLAIN ANALYZE例の出力です。

EXPLAIN ANALYZE SELECT COUNT(*) FROM t1 GROUP BY id;
+------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+ | id | estRows | actRows | task | access object | execution info | operator info | memory | disk | +------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+ | TableReader_31 | 4.00 | 2 | root | | time:44.5ms, loops:2, cop_task: {num: 1, max: 0s, proc_keys: 0, copr_cache_hit_ratio: 0.00} | data:ExchangeSender_30 | N/A | N/A | | └─ExchangeSender_30 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | ExchangeType: PassThrough, tasks: [2, 3, 4] | N/A | N/A | | └─Projection_26 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | Column#4 | N/A | N/A | | └─HashAgg_27 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | group by:test.t1.id, funcs:sum(Column#7)->Column#4 | N/A | N/A | | └─ExchangeReceiver_29 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:14.5ms, loops:1, threads:20} | | N/A | N/A | | └─ExchangeSender_28 | 4.00 | 0 | batchCop[tiflash] | | tiflash_task:{time:9.49ms, loops:0, threads:0} | ExchangeType: HashPartition, Hash Cols: test.t1.id, tasks: [1] | N/A | N/A | | └─HashAgg_9 | 4.00 | 0 | batchCop[tiflash] | | tiflash_task:{time:9.49ms, loops:0, threads:0} | group by:test.t1.id, funcs:count(1)->Column#7 | N/A | N/A | | └─TableFullScan_25 | 6.00 | 0 | batchCop[tiflash] | table:t1 | tiflash_task:{time:9.49ms, loops:0, threads:0}, tiflash_scan:{dtfile:{total_scanned_packs:1,...}} | keep order:false | N/A | N/A | +------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+

EXPLAINの出力と比較すると、演算子ExchangeSenderoperator info列にはtasks表示されます。これは、クエリ フラグメントがインスタンス化される MPP タスクの ID を記録します。さらに、各 MPP オペレーターにはexecution info列にthreadsフィールドがあり、TiDB がこのオペレーターを実行するときの操作の同時実行性が記録されます。クラスターが複数のノードで構成されている場合、この同時実行数は、すべてのノードの同時実行数を合計した結果になります。

MPP バージョンと交換データ圧縮

v6.6.0 以降、新しいフィールドMPPVersionCompressionが MPP 実行プランに追加されます。

  • MppVersion : MPP 実行プランのバージョン番号。システム変数mpp_versionを通じて設定できます。
  • Compression : Exchange演算子のデータ圧縮モード。システム変数mpp_exchange_compression_modeを通じて設定できます。データ圧縮が有効になっていない場合、このフィールドは実行計画に表示されません。

次の例を参照してください。

mysql > EXPLAIN SELECT COUNT(*) AS count_order FROM lineitem GROUP BY l_returnflag, l_linestatus ORDER BY l_returnflag, l_linestatus; +----------------------------------------+--------------+--------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------------+--------------+--------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Projection_6 | 3.00 | root | | Column#18 | | └─Sort_8 | 3.00 | root | | tpch100.lineitem.l_returnflag, tpch100.lineitem.l_linestatus | | └─TableReader_36 | 3.00 | root | | MppVersion: 1, data:ExchangeSender_35 | | └─ExchangeSender_35 | 3.00 | mpp[tiflash] | | ExchangeType: PassThrough | | └─Projection_31 | 3.00 | mpp[tiflash] | | Column#18, tpch100.lineitem.l_returnflag, tpch100.lineitem.l_linestatus | | └─HashAgg_32 | 3.00 | mpp[tiflash] | | group by:tpch100.lineitem.l_linestatus, tpch100.lineitem.l_returnflag, funcs:sum(Column#23)->Column#18, funcs:firstrow(tpch100.lineitem.l_returnflag)->tpch100.lineitem.l_returnflag, funcs:firstrow(tpch100.lineitem.l_linestatus)->tpch100.lineitem.l_linestatus, stream_count: 20 | | └─ExchangeReceiver_34 | 3.00 | mpp[tiflash] | | stream_count: 20 | | └─ExchangeSender_33 | 3.00 | mpp[tiflash] | | ExchangeType: HashPartition, Compression: FAST, Hash Cols: [name: tpch100.lineitem.l_returnflag, collate: utf8mb4_bin], [name: tpch100.lineitem.l_linestatus, collate: utf8mb4_bin], stream_count: 20 | | └─HashAgg_14 | 3.00 | mpp[tiflash] | | group by:tpch100.lineitem.l_linestatus, tpch100.lineitem.l_returnflag, funcs:count(1)->Column#23 | | └─TableFullScan_30 | 600037902.00 | mpp[tiflash] | table:lineitem | keep order:false | +----------------------------------------+--------------+--------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

前述の実行計画の結果では、TiDB はバージョン1の MPP 実行計画を使用してTableReaderをビルドします。 HashPartitionタイプのExchangeSender演算子は、 FASTデータ圧縮モードを使用します。 PassThroughタイプのExchangeSenderオペレータでは、データ圧縮は有効になっていません。

このページは役に立ちましたか?