📣

TiDB Cloud Serverless 现已更名为
Starter
!此页面由 AI 自动翻译,英文原文请见
此处。

EXPLAIN Walkthrough

由于 SQL 是一种声明式语言,你无法自动判断一个查询是否高效执行。你必须先使用 EXPLAIN 语句来了解当前的执行计划。

以下语句来自 bikeshare example database,统计 2017 年 7 月 1 日的出行次数:

EXPLAIN SELECT count(*) FROM trips WHERE start_date BETWEEN '2017-07-01 00:00:00' AND '2017-07-01 23:59:59';
+------------------------------+----------+-----------+---------------+------------------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------+----------+-----------+---------------+------------------------------------------------------------------------------------------------------------------------+ | StreamAgg_20 | 1.00 | root | | funcs:count(Column#13)->Column#11 | | └─TableReader_21 | 1.00 | root | | data:StreamAgg_9 | | └─StreamAgg_9 | 1.00 | cop[tikv] | | funcs:count(1)->Column#13 | | └─Selection_19 | 250.00 | cop[tikv] | | ge(bikeshare.trips.start_date, 2017-07-01 00:00:00.000000), le(bikeshare.trips.start_date, 2017-07-01 23:59:59.000000) | | └─TableFullScan_18 | 10000.00 | cop[tikv] | table:trips | keep order:false, stats:pseudo | +------------------------------+----------+-----------+---------------+------------------------------------------------------------------------------------------------------------------------+ 5 rows in set (0.00 sec)

从子操作符 └─TableFullScan_18 返回,你可以看到其执行过程如下,目前还不够理想:

  1. 协程(TiKV)以 TableFullScan 操作读取整个 trips 表,然后将读取到的行传递给 Selection_19 操作符,仍在 TiKV 内部。
  2. WHERE start_date BETWEEN .. 条件在 Selection_19 操作符中进行过滤。估算符合条件的行数大约为 250 行。注意,这个数字是根据统计信息和操作符的逻辑估算得出。└─TableFullScan_18 操作符显示 stats:pseudo,意味着该表没有实际的统计信息。运行 ANALYZE TABLE trips 收集统计信息后,统计数据会更准确。
  3. 满足筛选条件的行随后会应用 count 函数。这也在 StreamAgg_9 操作符中完成,仍在 TiKV(cop[tikv])内部。TiKV 的协程可以执行许多 MySQL 内置函数,count 就是其中之一。
  4. StreamAgg_9 的结果随后传递给 TableReader_21 操作符,该操作符现在在 TiDB 服务器(root)内部。此操作符的 estRows 值为 1,意味着它会从每个 TiKV Region 接收一行数据。关于这些请求的更多信息,请参见 EXPLAIN ANALYZE
  5. StreamAgg_20 操作符对来自 └─TableReader_21 操作符的每一行应用 count 函数,从 SHOW TABLE REGIONS 可以看到大约有 56 行。由于这是根操作符,它会将结果返回给客户端。

评估当前性能

EXPLAIN 只返回查询的执行计划,不会执行查询。若要获得实际的执行时间,可以直接执行查询或使用 EXPLAIN ANALYZE

EXPLAIN ANALYZE SELECT count(*) FROM trips WHERE start_date BETWEEN '2017-07-01 00:00:00' AND '2017-07-01 23:59:59';
+------------------------------+----------+----------+-----------+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------+-----------+------+ | id | estRows | actRows | task | access object | execution info | operator info | memory | disk | +------------------------------+----------+----------+-----------+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------+-----------+------+ | StreamAgg_20 | 1.00 | 1 | root | | time:1.031417203s, loops:2 | funcs:count(Column#13)->Column#11 | 632 Bytes | N/A | | └─TableReader_21 | 1.00 | 56 | root | | time:1.031408123s, loops:2, cop_task: {num: 56, max: 782.147269ms, min: 5.759953ms, avg: 252.005927ms, p95: 609.294603ms, max_proc_keys: 910371, p95_proc_keys: 704775, tot_proc: 11.524s, tot_wait: 580ms, rpc_num: 56, rpc_time: 14.111932641s} | data:StreamAgg_9 | 328 Bytes | N/A | | └─StreamAgg_9 | 1.00 | 56 | cop[tikv] | | proc max:640ms, min:8ms, p80:276ms, p95:480ms, iters:18695, tasks:56 | funcs:count(1)->Column#13 | N/A | N/A | | └─Selection_19 | 250.00 | 11409 | cop[tikv] | | proc max:640ms, min:8ms, p80:276ms, p95:476ms, iters:18695, tasks:56 | ge(bikeshare.trips.start_date, 2017-07-01 00:00:00.000000), le(bikeshare.trips.start_date, 2017-07-01 23:59:59.000000) | N/A | N/A | | └─TableFullScan_18 | 10000.00 | 19117643 | cop[tikv] | table:trips | proc max:612ms, min:8ms, p80:248ms, p95:460ms, iters:18695, tasks:56 | keep order:false, stats:pseudo | N/A | N/A | +------------------------------+----------+----------+-----------+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------+-----------+------+ 5 rows in set (1.03 sec)

上述示例查询耗时 1.03 秒,性能尚不理想。

EXPLAIN ANALYZE 的结果可以看出,actRows 表示部分估算(estRows)不准确(预期 1 万行,实际找到 1900 万行),这在 └─TableFullScan_18operator infostats:pseudo)中已提示。如果先运行 ANALYZE TABLE,再执行 EXPLAIN ANALYZE,可以看到估算值更接近实际:

ANALYZE TABLE trips; EXPLAIN ANALYZE SELECT count(*) FROM trips WHERE start_date BETWEEN '2017-07-01 00:00:00' AND '2017-07-01 23:59:59';
Query OK, 0 rows affected (10.22 sec) +------------------------------+-------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------+-----------+------+ | id | estRows | actRows | task | access object | execution info | operator info | memory | disk | +------------------------------+-------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------+-----------+------+ | StreamAgg_20 | 1.00 | 1 | root | | time:926.393612ms, loops:2 | funcs:count(Column#13)->Column#11 | 632 Bytes | N/A | | └─TableReader_21 | 1.00 | 56 | root | | time:926.384792ms, loops:2, cop_task: {num: 56, max: 850.94424ms, min: 6.042079ms, avg: 234.987725ms, p95: 495.474806ms, max_proc_keys: 910371, p95_proc_keys: 704775, tot_proc: 10.656s, tot_wait: 904ms, rpc_num: 56, rpc_time: 13.158911952s} | data:StreamAgg_9 | 328 Bytes | N/A | | └─StreamAgg_9 | 1.00 | 56 | cop[tikv] | | proc max:592ms, min:4ms, p80:244ms, p95:480ms, iters:18695, tasks:56 | funcs:count(1)->Column#13 | N/A | N/A | | └─Selection_19 | 432.89 | 11409 | cop[tikv] | | proc max:592ms, min:4ms, p80:244ms, p95:480ms, iters:18695, tasks:56 | ge(bikeshare.trips.start_date, 2017-07-01 00:00:00.000000), le(bikeshare.trips.start_date, 2017-07-01 23:59:59.000000) | N/A | N/A | | └─TableFullScan_18 | 19117643.00 | 19117643 | cop[tikv] | table:trips | proc max:564ms, min:4ms, p80:228ms, p95:456ms, iters:18695, tasks:56 | keep order:false | N/A | N/A | +------------------------------+-------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------+-----------+------+ 5 rows in set (0.93 sec)

执行 ANALYZE TABLE 后,可以看到 └─TableFullScan_18 的估算行数变得准确,└─Selection_19 的估算也更接近实际。在上述两种情况下,虽然执行计划(TiDB 用于执行此查询的操作符集合)没有变化,但过时的统计信息常常会导致次优的执行计划。

除了 ANALYZE TABLE,TiDB 还会在达到 tidb_auto_analyze_ratio 阈值后,自动在后台重新生成统计信息。你可以通过执行 SHOW STATS_HEALTHY 来查看 TiDB 对统计信息的健康程度:

SHOW STATS_HEALTHY;
+-----------+------------+----------------+---------+ | Db_name | Table_name | Partition_name | Healthy | +-----------+------------+----------------+---------+ | bikeshare | trips | | 100 | +-----------+------------+----------------+---------+ 1 row in set (0.00 sec)

识别优化点

当前执行计划在以下方面是高效的:

  • 大部分工作由 TiKV 协程内部处理。只需 56 行数据通过网络传回 TiDB 进行处理。每一行都很短,只包含符合条件的计数。
  • 在 TiDB(StreamAgg_20)和 TiKV(└─StreamAgg_9)中对行数进行聚合,采用流式聚合,内存使用非常高效。

当前执行计划的最大问题在于条件 start_date BETWEEN '2017-07-01 00:00:00' AND '2017-07-01 23:59:59' 并未立即应用。所有行首先通过 TableFullScan 读取,然后再进行筛选。你可以通过 SHOW CREATE TABLE trips 的输出找到原因:

SHOW CREATE TABLE trips\G
*************************** 1. row *************************** Table: trips Create Table: CREATE TABLE `trips` ( `trip_id` bigint NOT NULL AUTO_INCREMENT, `duration` int NOT NULL, `start_date` datetime DEFAULT NULL, `end_date` datetime DEFAULT NULL, `start_station_number` int DEFAULT NULL, `start_station` varchar(255) DEFAULT NULL, `end_station_number` int DEFAULT NULL, `end_station` varchar(255) DEFAULT NULL, `bike_number` varchar(255) DEFAULT NULL, `member_type` varchar(255) DEFAULT NULL, PRIMARY KEY (`trip_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin AUTO_INCREMENT=20477318 1 row in set (0.00 sec)

start_date 上没有索引。你需要添加索引,将此条件推入索引读取操作符。可以如下添加索引:

ALTER TABLE trips ADD INDEX (start_date);
Query OK, 0 rows affected (2 min 10.23 sec)

添加索引后,可以再次在 EXPLAIN 中执行该查询。以下输出显示,已选择新的执行计划,TableFullScanSelection 操作符已被消除:

EXPLAIN SELECT count(*) FROM trips WHERE start_date BETWEEN '2017-07-01 00:00:00' AND '2017-07-01 23:59:59';
+-----------------------------+---------+-----------+-------------------------------------------+-------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +-----------------------------+---------+-----------+-------------------------------------------+-------------------------------------------------------------------+ | StreamAgg_17 | 1.00 | root | | funcs:count(Column#13)->Column#11 | | └─IndexReader_18 | 1.00 | root | | index:StreamAgg_9 | | └─StreamAgg_9 | 1.00 | cop[tikv] | | funcs:count(1)->Column#13 | | └─IndexRangeScan_16 | 8471.88 | cop[tikv] | table:trips, index:start_date(start_date) | range:[2017-07-01 00:00:00,2017-07-01 23:59:59], keep order:false | +-----------------------------+---------+-----------+-------------------------------------------+-------------------------------------------------------------------+ 4 rows in set (0.00 sec)

为了比较实际的执行时间,你可以再次使用 EXPLAIN ANALYZE

EXPLAIN ANALYZE SELECT count(*) FROM trips WHERE start_date BETWEEN '2017-07-01 00:00:00' AND '2017-07-01 23:59:59';
+-----------------------------+---------+---------+-----------+-------------------------------------------+------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------+-----------+------+ | id | estRows | actRows | task | access object | execution info | operator info | memory | disk | +-----------------------------+---------+---------+-----------+-------------------------------------------+------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------+-----------+------+ | StreamAgg_17 | 1.00 | 1 | root | | time:4.516728ms, loops:2 | funcs:count(Column#13)->Column#11 | 372 Bytes | N/A | | └─IndexReader_18 | 1.00 | 1 | root | | time:4.514278ms, loops:2, cop_task: {num: 1, max:4.462288ms, proc_keys: 11409, rpc_num: 1, rpc_time: 4.457148ms} | index:StreamAgg_9 | 238 Bytes | N/A | | └─StreamAgg_9 | 1.00 | 1 | cop[tikv] | | time:4ms, loops:12 | funcs:count(1)->Column#13 | N/A | N/A | | └─IndexRangeScan_16 | 8471.88 | 11409 | cop[tikv] | table:trips, index:start_date(start_date) | time:4ms, loops:12 | range:[2017-07-01 00:00:00,2017-07-01 23:59:59], keep order:false | N/A | N/A | +-----------------------------+---------+---------+-----------+-------------------------------------------+------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------+-----------+------+ 4 rows in set (0.00 sec)

从上面的结果可以看出,查询耗时已从 1.03 秒缩短到 0.0 秒。

禁用子查询的提前执行

在查询优化过程中,TiDB 会预先执行可以直接计算的子查询。例如:

CREATE TABLE t1(a int); INSERT INTO t1 VALUES(1); CREATE TABLE t2(a int); EXPLAIN SELECT * FROM t2 WHERE a = (SELECT a FROM t1);
+--------------------------+----------+-----------+---------------+--------------------------------+ | id | estRows | task | access object | operator info | +--------------------------+----------+-----------+---------------+--------------------------------+ | TableReader_14 | 10.00 | root | | data:Selection_13 | | └─Selection_13 | 10.00 | cop[tikv] | | eq(test.t2.a, 1) | | └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo | +--------------------------+----------+-----------+---------------+--------------------------------+ 3 rows in set (0.00 sec)

在上述示例中,子查询 a = (SELECT a FROM t1) 在优化阶段被计算,并重写为 t2.a=1。这允许在优化过程中进行常量传播和折叠等优化。然而,这会影响 EXPLAIN 语句的执行时间。当子查询本身执行时间较长时,EXPLAIN 可能无法完成,从而影响线上排查。

从 v7.3.0 版本开始,TiDB 引入了 tidb_opt_enable_non_eval_scalar_subquery 系统变量,用于控制是否禁用 EXPLAIN 中此类子查询的预执行。该变量的默认值为 OFF,表示会预先计算子查询。你可以将其设置为 ON 来禁用子查询的预执行:

SET @@tidb_opt_enable_non_eval_scalar_subquery = ON; EXPLAIN SELECT * FROM t2 WHERE a = (SELECT a FROM t1);
+---------------------------+----------+-----------+---------------+---------------------------------+ | id | estRows | task | access object | operator info | +---------------------------+----------+-----------+---------------+---------------------------------+ | Selection_13 | 8000.00 | root | | eq(test.t2.a, ScalarQueryCol#5) | | └─TableReader_15 | 10000.00 | root | | data:TableFullScan_14 | | └─TableFullScan_14 | 10000.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo | | ScalarSubQuery_10 | N/A | root | | Output: ScalarQueryCol#5 | | └─MaxOneRow_6 | 1.00 | root | | | | └─TableReader_9 | 1.00 | root | | data:TableFullScan_8 | | └─TableFullScan_8 | 1.00 | cop[tikv] | table:t1 | keep order:false, stats:pseudo | +---------------------------+----------+-----------+---------------+---------------------------------+ 7 rows in set (0.00 sec)

可以看到,标量子查询在执行过程中没有展开,这样更容易理解此类 SQL 的具体执行流程。

文档内容是否有帮助?