📣

TiDB Cloud Serverless 现已更名为
Starter
!此页面由 AI 自动翻译,英文原文请见
此处。

从 Window Functions 派生 TopN 或 Limit

Window Functions 是一种常见的 SQL 函数类型。当你使用 window function 进行行编号,例如 ROW_NUMBER()RANK() 时,通常会在 window function 计算完成后对结果进行过滤。例如:

SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY a) AS rownumber FROM t) dt WHERE rownumber <= 3

在典型的 SQL 执行过程中,TiDB 首先对表 t 中的所有数据进行排序,然后为每一行计算 ROW_NUMBER() 结果,最后再进行 rownumber <= 3 的过滤。

从 v7.0.0 版本开始,TiDB 支持将从 window functions 派生的 TopN 或 Limit 操作符进行优化。借助此规则,TiDB 可以将原始 SQL 重写为等价的形式,例如:

WITH t_topN AS (SELECT a FROM t1 ORDER BY a LIMIT 3) SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY a) AS rownumber FROM t_topN) dt WHERE rownumber <= 3

重写后,TiDB 可以从 window function 和后续的过滤条件中推导出 TopN 操作符。与原始 SQL 中的 Sort 操作(ORDER BY)相比,TopN 操作符具有更高的执行效率。此外,TiKV 和 TiFlash 也支持将 TopN 操作下推,从而进一步提升重写 SQL 的性能。

从 window functions 派生 TopN 或 Limit 默认是关闭的。你可以通过将会话变量 tidb_opt_derive_topn 设置为 ON 来启用此功能。

启用后,你可以通过以下操作之一禁用该功能:

限制条件

  • 目前仅支持对 ROW_NUMBER() window function 进行 SQL 重写。
  • TiDB 仅在过滤条件为 <<= 时,才能将 SQL 重写为包含推导的 TopN。

使用示例

以下示例演示如何使用该优化规则。

不含 PARTITION BY 的 window functions

示例 1:不含 ORDER BY 的 window functions

CREATE TABLE t(id int, value int); SET tidb_opt_derive_topn=on; EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER () AS rownumber FROM t) dt WHERE rownumber <= 3;

结果如下:

+----------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------+ | Projection_9 | 2.40 | root | | Column#5 | | └─Selection_10 | 2.40 | root | | le(Column#5, 3) | | └─Window_11 | 3.00 | root | | row_number()->Column#5 over(rows between current row and current row) | | └─Limit_15 | 3.00 | root | | offset:0, count:3 | | └─TableReader_26 | 3.00 | root | | data:Limit_25 | | └─Limit_25 | 3.00 | cop[tikv] | | offset:0, count:3 | | └─TableFullScan_24 | 3.00 | cop[tikv] | table:t | keep order:false, stats:pseudo | +----------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------+

在此查询中,优化器从 window function 派生出 Limit 操作符,并将其下推到 TiKV。

示例 2:含 ORDER BY 的 window functions

CREATE TABLE t(id int, value int); SET tidb_opt_derive_topn=on; EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY value) AS rownumber FROM t) dt WHERE rownumber <= 3;

结果如下:

+----------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+ | Projection_10 | 2.40 | root | | Column#5 | | └─Selection_11 | 2.40 | root | | le(Column#5, 3) | | └─Window_12 | 3.00 | root | | row_number()->Column#5 over(order by test.t.value rows between current row and current row) | | └─TopN_13 | 3.00 | root | | test.t.value, offset:0, count:3 | | └─TableReader_25 | 3.00 | root | | data:TopN_24 | | └─TopN_24 | 3.00 | cop[tikv] | | test.t.value, offset:0, count:3 | | └─TableFullScan_23 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo | +----------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+

在此查询中,优化器从 window function 派生出 TopN 操作符,并将其下推到 TiKV。

含 PARTITION BY 的 window functions

示例 3:不含 ORDER BY 的 window functions

CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) clustered); SET tidb_opt_derive_topn=on; EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY id1) AS rownumber FROM t) dt WHERE rownumber <= 3;

结果如下:

+------------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------------------------------+ | Projection_10 | 2.40 | root | | Column#6 | | └─Selection_11 | 2.40 | root | | le(Column#6, 3) | | └─Shuffle_26 | 3.00 | root | | execution info: concurrency:2, data sources:[TableReader_24] | | └─Window_12 | 3.00 | root | | row_number()->Column#6 over(partition by test.t.id1 rows between current row and current row) | | └─Sort_25 | 3.00 | root | | test.t.id1 | | └─TableReader_24 | 3.00 | root | | data:Limit_23 | | └─Limit_23 | 3.00 | cop[tikv] | | partition by test.t.id1, offset:0, count:3 | | └─TableFullScan_22 | 3.00 | cop[tikv] | table:t | keep order:false, stats:pseudo | +------------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------------------------------+

在此查询中,优化器从 window function 派生出 Limit 操作符,并将其下推到 TiKV。注意,此 Limit 实际上是分区 Limit,即对每个具有相同 id1 值的分组应用 Limit。

示例 4:含 ORDER BY 的 window functions

CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) clustered); SET tidb_opt_derive_topn=on; EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY id1 ORDER BY value1) AS rownumber FROM t) dt WHERE rownumber <= 3;

结果如下:

+------------------------------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +------------------------------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------+ | Projection_10 | 2.40 | root | | Column#6 | | └─Selection_11 | 2.40 | root | | le(Column#6, 3) | | └─Shuffle_23 | 3.00 | root | | execution info: concurrency:3, data sources:[TableReader_21] | | └─Window_12 | 3.00 | root | | row_number()->Column#6 over(partition by test.t.id1 order by test.t.value1 rows between current row and current row) | | └─Sort_22 | 3.00 | root | | test.t.id1, test.t.value1 | | └─TableReader_21 | 3.00 | root | | data:TopN_19 | | └─TopN_19 | 3.00 | cop[tikv] | | partition by test.t.id1 order by test.t.value1, offset:0, count:3 | | └─TableFullScan_18 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo | +------------------------------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------+

在此查询中,优化器从 window function 派生出 TopN 操作符,并将其下推到 TiKV。注意,此 TopN 实际上是分区 TopN,即对每个具有相同 id1 值的分组应用。

示例 5:PARTITION BY 列不是主键的前缀

CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) clustered); SET tidb_opt_derive_topn=on; EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY value1) AS rownumber FROM t) dt WHERE rownumber <= 3;

结果如下:

+----------------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------+ | Projection_9 | 8000.00 | root | | Column#6 | | └─Selection_10 | 8000.00 | root | | le(Column#6, 3) | | └─Shuffle_15 | 10000.00 | root | | execution info: concurrency:5, data sources:[TableReader_13] | | └─Window_11 | 10000.00 | root | | row_number()->Column#6 over(partition by test.t.value1 rows between current row and current row) | | └─Sort_14 | 10000.00 | root | | test.t.value1 | | └─TableReader_13 | 10000.00 | root | | data:TableFullScan_12 | | └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo | +----------------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------+

在此查询中,由于 PARTITION BY 列不是主键的前缀,SQL 不会被重写。

示例 6:PARTITION BY 列是主键的前缀但不是聚簇索引

CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) nonclustered); SET tidb_opt_derive_topn=on; EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY id1) AS rownumber FROM t use index()) dt WHERE rownumber <= 3;

结果如下:

+----------------------------------+----------+-----------+---------------+-----------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+----------+-----------+---------------+-----------------------------------------------------------------------------------------------+ | Projection_9 | 8000.00 | root | | Column#7 | | └─Selection_10 | 8000.00 | root | | le(Column#7, 3) | | └─Shuffle_15 | 10000.00 | root | | execution info: concurrency:5, data sources:[TableReader_13] | | └─Window_11 | 10000.00 | root | | row_number()->Column#7 over(partition by test.t.id1 rows between current row and current row) | | └─Sort_14 | 10000.00 | root | | test.t.id1 | | └─TableReader_13 | 10000.00 | root | | data:TableFullScan_12 | | └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo | +----------------------------------+----------+-----------+---------------+-----------------------------------------------------------------------------------------------+

在此查询中,虽然 PARTITION BY 列是主键的前缀,但由于主键不是聚簇索引,SQL 不会被重写。

文档内容是否有帮助?