- 关于 TiDB
- 快速上手
- 部署标准集群
- 数据迁移
- 运维操作
- 监控与告警
- 故障诊断
- 性能调优
- 系统调优
- 软件调优
- SQL 性能调优
- SQL 性能调优概览
- 理解 TiDB 执行计划
- SQL 优化流程
- 控制执行计划
- 教程
- 同城多中心部署
- 两地三中心部署
- 同城两中心部署
- 读取历史数据
- 使用 Stale Read 功能读取历史数据(推荐)
- 使用系统变量
tidb_snapshot
读取历史数据
- 最佳实践
- Placement Rules 使用文档
- Load Base Split 使用文档
- Store Limit 使用文档
- TiDB 工具
- 功能概览
- 适用场景
- 工具下载
- TiUP
- 文档地图
- 概览
- 术语及核心概念
- TiUP 组件管理
- FAQ
- 故障排查
- TiUP 命令参考手册
- 命令概览
- TiUP 命令
- TiUP Cluster 命令
- TiUP Cluster 命令概览
- tiup cluster audit
- tiup cluster check
- tiup cluster clean
- tiup cluster deploy
- tiup cluster destroy
- tiup cluster disable
- tiup cluster display
- tiup cluster edit-config
- tiup cluster enable
- tiup cluster help
- tiup cluster import
- tiup cluster list
- tiup cluster patch
- tiup cluster prune
- tiup cluster reload
- tiup cluster rename
- tiup cluster replay
- tiup cluster restart
- tiup cluster scale-in
- tiup cluster scale-out
- tiup cluster start
- tiup cluster stop
- tiup cluster template
- tiup cluster upgrade
- TiUP DM 命令
- TiUP DM 命令概览
- tiup dm audit
- tiup dm deploy
- tiup dm destroy
- tiup dm disable
- tiup dm display
- tiup dm edit-config
- tiup dm enable
- tiup dm help
- tiup dm import
- tiup dm list
- tiup dm patch
- tiup dm prune
- tiup dm reload
- tiup dm replay
- tiup dm restart
- tiup dm scale-in
- tiup dm scale-out
- tiup dm start
- tiup dm stop
- tiup dm template
- tiup dm upgrade
- TiDB 集群拓扑文件配置
- DM 集群拓扑文件配置
- TiUP 镜像参考指南
- TiUP 组件文档
- PingCAP Clinic 诊断服务 (Technical Preview)
- TiDB Operator
- Dumpling
- TiDB Lightning
- TiDB Data Migration
- 关于 Data Migration
- 快速开始
- 部署 DM 集群
- 入门指南
- 进阶教程
- 运维管理
- 参考手册
- 使用示例
- 异常解决
- 版本发布历史
- Backup & Restore (BR)
- TiDB Binlog
- TiCDC
- sync-diff-inspector
- TiSpark
- 参考指南
- 架构
- 监控指标
- 安全加固
- 权限
- SQL
- SQL 语言结构和语法
- SQL 语句
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ADMIN SHOW TELEMETRY
ALTER DATABASE
ALTER INDEX
ALTER INSTANCE
ALTER PLACEMENT POLICY
ALTER TABLE
ALTER USER
ANALYZE TABLE
BACKUP
BEGIN
CHANGE COLUMN
CHANGE DRAINER
CHANGE PUMP
COMMIT
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE PLACEMENT POLICY
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP PLACEMENT POLICY
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
LOAD DATA
LOAD STATS
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
RESTORE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW [BACKUPS|RESTORES]
SHOW ANALYZE STATUS
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CONFIG
SHOW CREATE PLACEMENT POLICY
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLACEMENT
SHOW PLACEMENT FOR
SHOW PLACEMENT LABELS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- 数据类型
- 函数与操作符
- 聚簇索引
- 约束
- 生成列
- SQL 模式
- 表属性
- 事务
- 垃圾回收 (GC)
- 视图
- 分区表
- 临时表
- 缓存表
- 字符集和排序
- Placement Rules in SQL
- 系统表
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_CONFIG
CLUSTER_HARDWARE
CLUSTER_INFO
CLUSTER_LOAD
CLUSTER_LOG
CLUSTER_SYSTEMINFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
INSPECTION_RESULT
INSPECTION_RULES
INSPECTION_SUMMARY
KEY_COLUMN_USAGE
METRICS_SUMMARY
METRICS_TABLES
PARTITIONS
PLACEMENT_POLICIES
PROCESSLIST
REFERENTIAL_CONSTRAINTS
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS
TIDB_HOT_REGIONS_HISTORY
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
METRICS_SCHEMA
- UI
- CLI
- 命令行参数
- 配置文件参数
- 系统变量
- 存储引擎
- 遥测
- 错误码
- 通过拓扑 label 进行副本调度
- 常见问题解答 (FAQ)
- 版本发布历史
- 术语表
TiDB 数据库的存储
本文主要介绍 TiKV 的一些设计思想和关键概念。
Key-Value Pairs(键值对)
作为保存数据的系统,首先要决定的是数据的存储模型,也就是数据以什么样的形式保存下来。TiKV 的选择是 Key-Value 模型,并且提供有序遍历方法。
TiKV 数据存储的两个关键点:
- 这是一个巨大的 Map(可以类比一下 C++ 的 std::map),也就是存储的是 Key-Value Pairs(键值对)
- 这个 Map 中的 Key-Value pair 按照 Key 的二进制顺序有序,也就是可以 Seek 到某一个 Key 的位置,然后不断地调用 Next 方法以递增的顺序获取比这个 Key 大的 Key-Value。
注意,本文所说的 TiKV 的 KV 存储模型和 SQL 中的 Table 无关。本文不讨论 SQL 中的任何概念,专注于讨论如何实现 TiKV 这样一个高性能、高可靠性、分布式的 Key-Value 存储。
本地存储 (RocksDB)
任何持久化的存储引擎,数据终归要保存在磁盘上,TiKV 也不例外。但是 TiKV 没有选择直接向磁盘上写数据,而是把数据保存在 RocksDB 中,具体的数据落地由 RocksDB 负责。这个选择的原因是开发一个单机存储引擎工作量很大,特别是要做一个高性能的单机引擎,需要做各种细致的优化,而 RocksDB 是由 Facebook 开源的一个非常优秀的单机 KV 存储引擎,可以满足 TiKV 对单机引擎的各种要求。这里可以简单的认为 RocksDB 是一个单机的持久化 Key-Value Map。
Raft 协议
接下来 TiKV 的实现面临一件更难的事情:如何保证单机失效的情况下,数据不丢失,不出错?
简单来说,需要想办法把数据复制到多台机器上,这样一台机器无法服务了,其他的机器上的副本还能提供服务;复杂来说,还需要这个数据复制方案是可靠和高效的,并且能处理副本失效的情况。TiKV 选择了 Raft 算法。Raft 是一个一致性协议,本文只会对 Raft 做一个简要的介绍,细节问题可以参考它的论文。Raft 提供几个重要的功能:
- Leader(主副本)选举
- 成员变更(如添加副本、删除副本、转移 Leader 等操作)
- 日志复制
TiKV 利用 Raft 来做数据复制,每个数据变更都会落地为一条 Raft 日志,通过 Raft 的日志复制功能,将数据安全可靠地同步到复制组的每一个节点中。不过在实际写入中,根据 Raft 的协议,只需要同步复制到多数节点,即可安全地认为数据写入成功。
总结一下,通过单机的 RocksDB,TiKV 可以将数据快速地存储在磁盘上;通过 Raft,将数据复制到多台机器上,以防单机失效。数据的写入是通过 Raft 这一层的接口写入,而不是直接写 RocksDB。通过实现 Raft,TiKV 变成了一个分布式的 Key-Value 存储,少数几台机器宕机也能通过原生的 Raft 协议自动把副本补全,可以做到对业务无感知。
Region
首先,为了便于理解,在此节,假设所有的数据都只有一个副本。前面提到,TiKV 可以看做是一个巨大的有序的 KV Map,那么为了实现存储的水平扩展,数据将被分散在多台机器上。对于一个 KV 系统,将数据分散在多台机器上有两种比较典型的方案:
- Hash:按照 Key 做 Hash,根据 Hash 值选择对应的存储节点。
- Range:按照 Key 分 Range,某一段连续的 Key 都保存在一个存储节点上。
TiKV 选择了第二种方式,将整个 Key-Value 空间分成很多段,每一段是一系列连续的 Key,将每一段叫做一个 Region,并且会尽量保持每个 Region 中保存的数据不超过一定的大小,目前在 TiKV 中默认是 96MB。每一个 Region 都可以用 [StartKey,EndKey) 这样一个左闭右开区间来描述。
注意,这里的 Region 还是和 SQL 中的表没什么关系。 这里的讨论依然不涉及 SQL,只和 KV 有关。
将数据划分成 Region 后,TiKV 将会做两件重要的事情:
- 以 Region 为单位,将数据分散在集群中所有的节点上,并且尽量保证每个节点上服务的 Region 数量差不多。
- 以 Region 为单位做 Raft 的复制和成员管理。
这两点非常重要:
- 先看第一点,数据按照 Key 切分成很多 Region,每个 Region 的数据只会保存在一个节点上面(暂不考虑多副本)。TiDB 系统会有一个组件 (PD) 来负责将 Region 尽可能均匀的散布在集群中所有的节点上,这样一方面实现了存储容量的水平扩展(增加新的节点后,会自动将其他节点上的 Region 调度过来),另一方面也实现了负载均衡(不会出现某个节点有很多数据,其他节点上没什么数据的情况)。同时为了保证上层客户端能够访问所需要的数据,系统中也会有一个组件 (PD) 记录 Region 在节点上面的分布情况,也就是通过任意一个 Key 就能查询到这个 Key 在哪个 Region 中,以及这个 Region 目前在哪个节点上(即 Key 的位置路由信息)。至于负责这两项重要工作的组件 (PD),会在后续介绍。
- 对于第二点,TiKV 是以 Region 为单位做数据的复制,也就是一个 Region 的数据会保存多个副本,TiKV 将每一个副本叫做一个 Replica。Replica 之间是通过 Raft 来保持数据的一致,一个 Region 的多个 Replica 会保存在不同的节点上,构成一个 Raft Group。其中一个 Replica 会作为这个 Group 的 Leader,其他的 Replica 作为 Follower。默认情况下,所有的读和写都是通过 Leader 进行,读操作在 Leader 上即可完成,而写操作再由 Leader 复制给 Follower。
大家理解了 Region 之后,应该可以理解下面这张图:
以 Region 为单位做数据的分散和复制,TiKV 就成为了一个分布式的具备一定容灾能力的 KeyValue 系统,不用再担心数据存不下,或者是磁盘故障丢失数据的问题。
MVCC
很多数据库都会实现多版本并发控制 (MVCC),TiKV 也不例外。设想这样的场景:两个客户端同时去修改一个 Key 的 Value,如果没有数据的多版本控制,就需要对数据上锁,在分布式场景下,可能会带来性能以及死锁问题。TiKV 的 MVCC 实现是通过在 Key 后面添加版本号来实现,简单来说,没有 MVCC 之前,可以把 TiKV 看做这样的:
Key1 -> Value
Key2 -> Value
……
KeyN -> Value
有了 MVCC 之后,TiKV 的 Key 排列是这样的:
Key1_Version3 -> Value
Key1_Version2 -> Value
Key1_Version1 -> Value
……
Key2_Version4 -> Value
Key2_Version3 -> Value
Key2_Version2 -> Value
Key2_Version1 -> Value
……
KeyN_Version2 -> Value
KeyN_Version1 -> Value
……
注意,对于同一个 Key 的多个版本,版本号较大的会被放在前面,版本号小的会被放在后面(见 Key-Value 一节,Key 是有序的排列),这样当用户通过一个 Key + Version 来获取 Value 的时候,可以通过 Key 和 Version 构造出 MVCC 的 Key,也就是 Key_Version。然后可以直接通过 RocksDB 的 SeekPrefix(Key_Version) API,定位到第一个大于等于这个 Key_Version 的位置。
分布式 ACID 事务
TiKV 的事务采用的是 Google 在 BigTable 中使用的事务模型:Percolator ,TiKV 根据这篇论文实现,并做了大量的优化。详细介绍参见事务概览。