Integrate TiDB Vector Search with peewee

This tutorial walks you through how to use peewee to interact with the TiDB Vector Search, store embeddings, and perform vector search queries.

Prerequisites

To complete this tutorial, you need:

Run the sample app

You can quickly learn about how to integrate TiDB Vector Search with peewee by following the steps below.

Step 1. Clone the repository

Clone the tidb-vector-python repository to your local machine:

git clone https://github.com/pingcap/tidb-vector-python.git

Step 2. Create a virtual environment

Create a virtual environment for your project:

cd tidb-vector-python/examples/orm-peewee-quickstart python3 -m venv .venv source .venv/bin/activate

Step 3. Install required dependencies

Install the required dependencies for the demo project:

pip install -r requirements.txt

Alternatively, you can install the following packages for your project:

pip install peewee pymysql python-dotenv tidb-vector

Step 4. Configure the environment variables

  1. Navigate to the Clusters page, and then click the name of your target cluster to go to its overview page.

  2. Click Connect in the upper-right corner. A connection dialog is displayed.

  3. Ensure the configurations in the connection dialog match your operating environment.

    • Connection Type is set to Public.
    • Branch is set to main.
    • Connect With is set to General.
    • Operating System matches your environment.
  4. Copy the connection parameters from the connection dialog.

  5. In the root directory of your Python project, create a .env file and paste the connection parameters to the corresponding environment variables.

    • TIDB_HOST: The host of the TiDB cluster.
    • TIDB_PORT: The port of the TiDB cluster.
    • TIDB_USERNAME: The username to connect to the TiDB cluster.
    • TIDB_PASSWORD: The password to connect to the TiDB cluster.
    • TIDB_DATABASE: The database name to connect to.
    • TIDB_CA_PATH: The path to the root certificate file.

    The following is an example for macOS:

    TIDB_HOST=gateway01.****.prod.aws.tidbcloud.com TIDB_PORT=4000 TIDB_USERNAME=********.root TIDB_PASSWORD=******** TIDB_DATABASE=test TIDB_CA_PATH=/etc/ssl/cert.pem

Step 5. Run the demo

python peewee-quickstart.py

Example output:

Get 3-nearest neighbor documents: - distance: 0.00853986601633272 document: fish - distance: 0.12712843905603044 document: dog - distance: 0.7327387580875756 document: tree Get documents within a certain distance: - distance: 0.00853986601633272 document: fish - distance: 0.12712843905603044 document: dog

Sample code snippets

You can refer to the following sample code snippets to develop your application.

Create vector tables

Connect to TiDB cluster

import os import dotenv from peewee import Model, MySQLDatabase, SQL, TextField from tidb_vector.peewee import VectorField dotenv.load_dotenv() # Using `pymysql` as the driver. connect_kwargs = { 'ssl_verify_cert': True, 'ssl_verify_identity': True, } # Using `mysqlclient` as the driver. # connect_kwargs = { # 'ssl_mode': 'VERIFY_IDENTITY', # 'ssl': { # # Root certificate default path # # https://docs.pingcap.com/tidbcloud/secure-connections-to-serverless-clusters/#root-certificate-default-path # 'ca': os.environ.get('TIDB_CA_PATH', '/path/to/ca.pem'), # }, # } db = MySQLDatabase( database=os.environ.get('TIDB_DATABASE', 'test'), user=os.environ.get('TIDB_USERNAME', 'root'), password=os.environ.get('TIDB_PASSWORD', ''), host=os.environ.get('TIDB_HOST', 'localhost'), port=int(os.environ.get('TIDB_PORT', '4000')), **connect_kwargs, )

Define a vector column

Create a table with a column named peewee_demo_documents that stores a 3-dimensional vector.

class Document(Model): class Meta: database = db table_name = 'peewee_demo_documents' content = TextField() embedding = VectorField(3)

Store documents with embeddings

Document.create(content='dog', embedding=[1, 2, 1]) Document.create(content='fish', embedding=[1, 2, 4]) Document.create(content='tree', embedding=[1, 0, 0])

Search the nearest neighbor documents

Search for the top-3 documents that are semantically closest to the query vector [1, 2, 3] based on the cosine distance function.

distance = Document.embedding.cosine_distance([1, 2, 3]).alias('distance') results = Document.select(Document, distance).order_by(distance).limit(3)

Search documents within a certain distance

Search for the documents whose cosine distance from the query vector [1, 2, 3] is less than 0.2.

distance_expression = Document.embedding.cosine_distance([1, 2, 3]) distance = distance_expression.alias('distance') results = Document.select(Document, distance).where(distance_expression < 0.2).order_by(distance).limit(3)

See also

Was this page helpful?