OpenAI Embeddings
This document describes how to use OpenAI embedding models with Auto Embedding in TiDB Cloud to perform semantic searches from text queries.
Available models
All OpenAI models are available for use with the openai/
prefix if you bring your own OpenAI API key (BYOK). For example:
text-embedding-3-small
- Name:
openai/text-embedding-3-small
- Dimensions: 512-1536 (default: 1536)
- Distance metric: Cosine, L2
- Price: Charged by OpenAI
- Hosted by TiDB Cloud: ❌
- Bring Your Own Key: ✅
text-embedding-3-large
- Name:
openai/text-embedding-3-large
- Dimensions: 256-3072 (default: 3072)
- Distance metric: Cosine, L2
- Price: Charged by OpenAI
- Hosted by TiDB Cloud: ❌
- Bring Your Own Key: ✅
For a full list of available models, see OpenAI Documentation.
SQL usage example
To use OpenAI models, you must specify an OpenAI API key as follows:
SET @@GLOBAL.TIDB_EXP_EMBED_OPENAI_API_KEY = 'your-openai-api-key-here';
CREATE TABLE sample (
`id` INT,
`content` TEXT,
`embedding` VECTOR(1536) GENERATED ALWAYS AS (EMBED_TEXT(
"openai/text-embedding-3-small",
`content`
)) STORED
);
INSERT INTO sample
(`id`, `content`)
VALUES
(1, "Java: Object-oriented language for cross-platform development."),
(2, "Java coffee: Bold Indonesian beans with low acidity."),
(3, "Java island: Densely populated, home to Jakarta."),
(4, "Java's syntax is used in Android apps."),
(5, "Dark roast Java beans enhance espresso blends.");
SELECT `id`, `content` FROM sample
ORDER BY
VEC_EMBED_COSINE_DISTANCE(
embedding,
"How to start learning Java programming?"
)
LIMIT 2;
Result:
+------+----------------------------------------------------------------+
| id | content |
+------+----------------------------------------------------------------+
| 1 | Java: Object-oriented language for cross-platform development. |
| 4 | Java's syntax is used in Android apps. |
+------+----------------------------------------------------------------+
Options
All OpenAI embedding options are supported via the additional_json_options
parameter of the EMBED_TEXT()
function.
Example: Use an alternative dimension for text-embedding-3-large
CREATE TABLE sample (
`id` INT,
`content` TEXT,
`embedding` VECTOR(1024) GENERATED ALWAYS AS (EMBED_TEXT(
"openai/text-embedding-3-large",
`content`,
'{"dimensions": 1024}'
)) STORED
);
For all available options, see OpenAI Documentation.
Python usage example
See PyTiDB Documentation.