- About TiDB
- Quick Start
- Deploy
- Software and Hardware Requirements
- Environment Configuration Checklist
- Plan Cluster Topology
- Install and Start
- Verify Cluster Status
- Test Cluster Performance
- Migrate
- Overview
- Migrate from MySQL
- Migrate from CSV Files
- Migrate from SQL Files
- Replicate Incremental Data between TiDB Clusters in Real Time
- Maintain
- Upgrade
- Scale
- Backup and Restore
- Use BR Tool (Recommended)
- Configure Time Zone
- Daily Checklist
- Maintain TiFlash
- Maintain TiDB Using TiUP
- Modify Configuration Online
- Monitor and Alert
- Troubleshoot
- TiDB Troubleshooting Map
- Identify Slow Queries
- Analyze Slow Queries
- SQL Diagnostics
- Identify Expensive Queries
- Statement Summary Tables
- Troubleshoot Hotspot Issues
- Troubleshoot Increased Read and Write Latency
- Troubleshoot Cluster Setup
- Troubleshoot High Disk I/O Usage
- Troubleshoot Lock Conflicts
- Troubleshoot TiFlash
- Troubleshoot Write Conflicts in Optimistic Transactions
- Performance Tuning
- System Tuning
- Software Tuning
- SQL Tuning
- Overview
- Understanding the Query Execution Plan
- SQL Optimization Process
- Overview
- Logic Optimization
- Physical Optimization
- Prepare Execution Plan Cache
- Control Execution Plans
- Tutorials
- Multiple Data Centers in One City Deployment
- Three Data Centers in Two Cities Deployment
- Two Data Centers in One City Deployment
- Read Historical Data
- Use Stale Read (Recommended)
- Use the
tidb_snapshot
System Variable
- Best Practices
- Use Placement Rules
- Use Load Base Split
- Use Store Limit
- TiDB Tools
- Overview
- Use Cases
- Download
- TiUP
- TiDB Operator
- Backup & Restore (BR)
- TiDB Binlog
- TiDB Lightning
- TiDB Data Migration
- TiCDC
- Dumpling
- sync-diff-inspector
- TiSpark
- Reference
- Cluster Architecture
- Key Monitoring Metrics
- Secure
- Privileges
- SQL
- SQL Language Structure and Syntax
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INDEX
ALTER INSTANCE
ALTER TABLE
ALTER USER
ANALYZE TABLE
BACKUP
BEGIN
CHANGE COLUMN
COMMIT
CHANGE DRAINER
CHANGE PUMP
CREATE [GLOBAL|SESSION] BINDING
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE SEQUENCE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP [GLOBAL|SESSION] BINDING
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP SEQUENCE
DROP STATS
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLASHBACK TABLE
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
LOAD DATA
LOAD STATS
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
RESTORE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW [BACKUPS|RESTORES]
SHOW [GLOBAL|SESSION] BINDINGS
SHOW BUILTINS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CONFIG
SHOW CREATE SEQUENCE
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW DRAINER STATUS
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEX [FROM|IN]
SHOW INDEXES [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW MASTER STATUS
SHOW PLUGINS
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW PROFILES
SHOW PUMP STATUS
SHOW SCHEMAS
SHOW STATS_HEALTHY
SHOW STATS_HISTOGRAMS
SHOW STATS_META
SHOW STATUS
SHOW TABLE NEXT_ROW_ID
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [FULL] TABLES
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SHUTDOWN
SPLIT REGION
START TRANSACTION
TABLE
TRACE
TRUNCATE
UPDATE
USE
WITH
- Data Types
- Functions and Operators
- Overview
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- Set Operations
- List of Expressions for Pushdown
- TiDB Specific Functions
- Clustered Indexes
- Constraints
- Generated Columns
- SQL Mode
- Transactions
- Garbage Collection (GC)
- Views
- Partitioning
- Character Set and Collation
- System Tables
mysql
- INFORMATION_SCHEMA
- Overview
ANALYZE_STATUS
CLIENT_ERRORS_SUMMARY_BY_HOST
CLIENT_ERRORS_SUMMARY_BY_USER
CLIENT_ERRORS_SUMMARY_GLOBAL
CHARACTER_SETS
CLUSTER_CONFIG
CLUSTER_HARDWARE
CLUSTER_INFO
CLUSTER_LOAD
CLUSTER_LOG
CLUSTER_SYSTEMINFO
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
DATA_LOCK_WAITS
DDL_JOBS
DEADLOCKS
ENGINES
INSPECTION_RESULT
INSPECTION_RULES
INSPECTION_SUMMARY
KEY_COLUMN_USAGE
METRICS_SUMMARY
METRICS_TABLES
PARTITIONS
PROCESSLIST
SCHEMATA
SEQUENCES
SESSION_VARIABLES
SLOW_QUERY
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_STORAGE_STATS
TIDB_HOT_REGIONS
TIDB_INDEXES
TIDB_SERVERS_INFO
TIDB_TRX
TIFLASH_REPLICA
TIKV_REGION_PEERS
TIKV_REGION_STATUS
TIKV_STORE_STATUS
USER_PRIVILEGES
VIEWS
METRICS_SCHEMA
- UI
- TiDB Dashboard
- Overview
- Maintain
- Access
- Overview Page
- Cluster Info Page
- Key Visualizer Page
- Metrics Relation Graph
- SQL Statements Analysis
- Slow Queries Page
- Cluster Diagnostics
- Search Logs Page
- Profile Instances Page
- Session Management and Configuration
- FAQ
- CLI
- Command Line Flags
- Configuration File Parameters
- System Variables
- Storage Engines
- Telemetry
- Errors Codes
- Table Filter
- Schedule Replicas by Topology Labels
- FAQs
- Release Notes
- All Releases
- Release Timeline
- v5.2
- v5.1
- v5.0
- v4.0
- v3.1
- v3.0
- v2.1
- v2.0
- v1.0
- Glossary
Binlog Consumer Client User Guide
Binlog Consumer Client is used to consume TiDB secondary binlog data from Kafka and output the data in a specific format. Currently, Drainer supports multiple kinds of down streaming, including MySQL, TiDB, file and Kafka. But sometimes users have customized requirements for outputting data to other formats, for example, Elasticsearch and Hive, so this feature is introduced.
Configure Drainer
Modify the configuration file of Drainer and set it to output the data to Kafka:
[syncer]
db-type = "kafka"
[syncer.to]
# the Kafka address
kafka-addrs = "127.0.0.1:9092"
# the Kafka version
kafka-version = "0.8.2.0"
Customized development
Data format
Firstly, you need to obtain the format information of the data which is output to Kafka by Drainer:
// `Column` stores the column data in the corresponding variable based on the data type.
message Column {
// Indicates whether the data is null
optional bool is_null = 1 [ default = false ];
// Stores `int` data
optional int64 int64_value = 2;
// Stores `uint`, `enum`, and `set` data
optional uint64 uint64_value = 3;
// Stores `float` and `double` data
optional double double_value = 4;
// Stores `bit`, `blob`, `binary` and `json` data
optional bytes bytes_value = 5;
// Stores `date`, `time`, `decimal`, `text`, `char` data
optional string string_value = 6;
}
// `ColumnInfo` stores the column information, including the column name, type, and whether it is the primary key.
message ColumnInfo {
optional string name = 1 [ (gogoproto.nullable) = false ];
// the lower case column field type in MySQL
// https://dev.mysql.com/doc/refman/8.0/en/data-types.html
// for the `numeric` type: int bigint smallint tinyint float double decimal bit
// for the `string` type: text longtext mediumtext char tinytext varchar
// blob longblob mediumblob binary tinyblob varbinary
// enum set
// for the `json` type: json
optional string mysql_type = 2 [ (gogoproto.nullable) = false ];
optional bool is_primary_key = 3 [ (gogoproto.nullable) = false ];
}
// `Row` stores the actual data of a row.
message Row { repeated Column columns = 1; }
// `MutationType` indicates the DML type.
enum MutationType {
Insert = 0;
Update = 1;
Delete = 2;
}
// `Table` contains mutations in a table.
message Table {
optional string schema_name = 1;
optional string table_name = 2;
repeated ColumnInfo column_info = 3;
repeated TableMutation mutations = 4;
}
// `TableMutation` stores mutations of a row.
message TableMutation {
required MutationType type = 1;
// data after modification
required Row row = 2;
// data before modification. It only takes effect for `Update MutationType`.
optional Row change_row = 3;
}
// `DMLData` stores all the mutations caused by DML in a transaction.
message DMLData {
// `tables` contains all the table changes in the transaction.
repeated Table tables = 1;
}
// `DDLData` stores the DDL information.
message DDLData {
// the database used currently
optional string schema_name = 1;
// the relates table
optional string table_name = 2;
// `ddl_query` is the original DDL statement query.
optional bytes ddl_query = 3;
}
// `BinlogType` indicates the binlog type, including DML and DDL.
enum BinlogType {
DML = 0; // Has `dml_data`
DDL = 1; // Has `ddl_query`
}
// `Binlog` stores all the changes in a transaction. Kafka stores the serialized result of the structure data.
message Binlog {
optional BinlogType type = 1 [ (gogoproto.nullable) = false ];
optional int64 commit_ts = 2 [ (gogoproto.nullable) = false ];
optional DMLData dml_data = 3;
optional DDLData ddl_data = 4;
}
For the definition of the data format, see binlog.proto
.
Driver
The TiDB-Tools project provides Driver, which is used to read the binlog data in Kafka. It has the following features:
- Read the Kafka data.
- Locate the binlog stored in Kafka based on
commit ts
.
You need to configure the following information when using Driver:
KafkaAddr
: the address of the Kafka clusterCommitTS
: from whichcommit ts
to start reading the binlogOffset
: from which Kafkaoffset
to start reading data. IfCommitTS
is set, you needn't configure this parameter.ClusterID
: the cluster ID of the TiDB clusterTopic
: the topic name of Kafka. If Topic is empty, use the default name in Drainer<ClusterID>_obinlog
.
You can use Driver by quoting the Driver code in package and refer to the example code provided by Driver to learn how to use Driver and parse the binlog data.
Currently, two examples are provided:
- Using Driver to replicate data to MySQL. This example shows how to convert a binlog to SQL
- Using Driver to print data
- The example code only shows how to use Driver. If you want to use Driver in the production environment, you need to optimize the code.
- Currently, only the Golang version of Driver and example code are available. If you want to use other languages, you need to generate the code file in the corresponding language based on the binlog proto file and develop an application to read the binlog data in Kafka, parse the data, and output the data to the downstream. You are also welcome to optimize the example code and submit the example code of other languages to TiDB-Tools.