- Introduction
- Concepts
- Architecture
- Key Features
- Horizontal Scalability
- MySQL Compatible Syntax
- Replicate from and to MySQL
- Distributed Transactions with Strong Consistency
- Cloud Native Architecture
- Minimize ETL with HTAP
- Fault Tolerance & Recovery with Raft
- Automatic Rebalancing
- Deployment and Orchestration with Ansible, Kubernetes, Docker
- JSON Support
- Spark Integration
- Read Historical Data Without Restoring from Backup
- Fast Import and Restore of Data
- Hybrid of Column and Row Storage
- SQL Plan Management
- Open Source
- Online Schema Changes
- How-to
- Get Started
- Deploy
- Hardware Recommendations
- From Binary Tarball
- Orchestrated Deployment
- Geographic Redundancy
- Data Migration with Ansible
- Configure
- Secure
- Transport Layer Security (TLS)
- Generate Self-signed Certificates
- Monitor
- Migrate
- Maintain
- Common Ansible Operations
- Backup and Restore
- Use BR (recommended)
- Identify Abnormal Queries
- Scale
- Upgrade
- Troubleshoot
- Reference
- SQL
- MySQL Compatibility
- SQL Language Structure
- Attributes
- Data Types
- Functions and Operators
- Function and Operator Reference
- Type Conversion in Expression Evaluation
- Operators
- Control Flow Functions
- String Functions
- Numeric Functions and Operators
- Date and Time Functions
- Bit Functions and Operators
- Cast Functions and Operators
- Encryption and Compression Functions
- Information Functions
- JSON Functions
- Aggregate (GROUP BY) Functions
- Window Functions
- Miscellaneous Functions
- Precision Math
- List of Expressions for Pushdown
- SQL Statements
ADD COLUMN
ADD INDEX
ADMIN
ADMIN CANCEL DDL
ADMIN CHECKSUM TABLE
ADMIN CHECK [TABLE|INDEX]
ADMIN SHOW DDL [JOBS|QUERIES]
ALTER DATABASE
ALTER INSTANCE
ALTER TABLE
ALTER USER
ANALYZE TABLE
BEGIN
CHANGE COLUMN
COMMIT
CREATE DATABASE
CREATE INDEX
CREATE ROLE
CREATE TABLE LIKE
CREATE TABLE
CREATE USER
CREATE VIEW
DEALLOCATE
DELETE
DESC
DESCRIBE
DO
DROP COLUMN
DROP DATABASE
DROP INDEX
DROP ROLE
DROP TABLE
DROP USER
DROP VIEW
EXECUTE
EXPLAIN ANALYZE
EXPLAIN
FLUSH PRIVILEGES
FLUSH STATUS
FLUSH TABLES
GRANT <privileges>
GRANT <role>
INSERT
KILL [TIDB]
LOAD DATA
LOAD STATS
MODIFY COLUMN
PREPARE
RECOVER TABLE
RENAME INDEX
RENAME TABLE
REPLACE
REVOKE <privileges>
REVOKE <role>
ROLLBACK
SELECT
SET DEFAULT ROLE
SET [NAMES|CHARACTER SET]
SET PASSWORD
SET ROLE
SET TRANSACTION
SET [GLOBAL|SESSION] <variable>
SHOW ANALYZE STATUS
SHOW CHARACTER SET
SHOW COLLATION
SHOW [FULL] COLUMNS FROM
SHOW CREATE TABLE
SHOW CREATE USER
SHOW DATABASES
SHOW ENGINES
SHOW ERRORS
SHOW [FULL] FIELDS FROM
SHOW GRANTS
SHOW INDEXES [FROM|IN]
SHOW INDEX [FROM|IN]
SHOW KEYS [FROM|IN]
SHOW PRIVILEGES
SHOW [FULL] PROCESSSLIST
SHOW SCHEMAS
SHOW STATUS
SHOW [FULL] TABLES
SHOW TABLE REGIONS
SHOW TABLE STATUS
SHOW [GLOBAL|SESSION] VARIABLES
SHOW WARNINGS
SPLIT REGION
START TRANSACTION
TRACE
TRUNCATE
UPDATE
USE
- Constraints
- Generated Columns
- Partitioning
- Character Set
- SQL Mode
- Views
- Configuration
- Security
- Transactions
- System Databases
- Errors Codes
- Supported Client Drivers
- Garbage Collection (GC)
- Performance
- Overview
- Understanding the Query Execution Plan
- The Blocklist of Optimization Rules and Expression Pushdown
- Introduction to Statistics
- TopN and Limit Push Down
- Optimizer Hints
- Follower Read
- Check the TiDB Cluster Status Using SQL Statements
- Execution Plan Binding
- Statement Summary Table
- Tune TiKV
- Operating System Tuning
- Column Pruning
- Key Monitoring Metrics
- Alert Rules
- Best Practices
- TiSpark
- TiKV
- TiFlash
- TiDB Binlog
- Tools
- Overview
- Use Cases
- Download
- TiDB Operator
- Table Filter
- Backup & Restore (BR)
- Mydumper
- Syncer
- Loader
- Data Migration
- TiDB Lightning
- sync-diff-inspector
- PD Control
- PD Recover
- TiKV Control
- TiDB Control
- TiDB in Kubernetes
- FAQs
- Support
- Contribute
- Adopters
- Releases
- All Releases
- v3.1
- v3.0
- v2.1
- v2.0
- v1.0
- Glossary
You are viewing the documentation of an older version of the TiDB database (TiDB v3.1).
TiFlash Overview
TiFlash is the key component that makes TiDB essentially an Hybrid Transactional/Analytical Processing (HTAP) database. As a columnar storage extension of TiKV, TiFlash provides both good isolation level and strong consistency guarantee.
In TiFlash, the columnar replicas are asynchronously replicated according to the Raft Learner consensus algorithm. When these replicas are read, the Snapshot Isolation level of consistency is achieved by validating Raft index and multi-version concurrency control (MVCC).
Architecture
The above figure is the architecture of TiDB in its HTAP form, including TiFlash nodes.
TiFlash provides the columnar storage, with a layer of coprocessors efficiently implemented by ClickHouse. Similar to TiKV, TiFlash also has a Multi-Raft system, which supports replicating and distributing data in the unit of Region (see Data Storage for details).
TiFlash conducts real-time replication of data in the TiKV nodes at a low cost that does not block writes in TiKV. Meanwhile, it provides the same read consistency as in TiKV and ensures that the latest data is read. The Region replica in TiFlash is logically identical to those in TiKV, and is split and merged along with the Leader replica in TiKV at the same time.
TiFlash is compatible with both TiDB and TiSpark, which enables you to freely choose between these two computing engines.
It is recommended that you deploy TiFlash in different nodes from TiKV to ensure workload isolation. It is also acceptable to deploy TiFlash and TiKV in the same node if no business isolation is required.
Currently, data cannot be written directly into TiFlash. You need to write data in TiKV and then replicate it to TiFlash, because it connects to the TiDB cluster as a Learner role. TiFlash supports data replication in the unit of table, but no data is replicated by default after deployment. To replicate data of a specified table, see Create TiFlash replicas for tables.
TiFlash has three components: the columnar storage module, tiflash proxy
, and pd buddy
. tiflash proxy
is responsible for the communication using the Multi-Raft consensus algorithm. pd buddy
works with PD to replicate data from TiKV to TiFlash in the unit of table.
When TiDB receives the DDL command to create replicas in TiFlash, the pd buddy
component acquires the information of the table to be replicated via the status port of TiDB, and sends the information to PD. Then PD performs the corresponding data scheduling according to the information provided by pd buddy
.
Key features
TiFlash has the following key features:
Asynchronous replication
The replica in TiFlash is asynchronously replicated as a special role, Raft Learner. This means when the TiFlash node is down or high network latency occurs, applications in TiKV can still proceed normally.
This replication mechanism inherits two advantages of TiKV: automatic load balancing and high availability.
- TiFlash does not rely on additional replication channels, but directly receives data from TiKV in a many-to-many manner.
- As long as the data is not lost in TiKV, you can restore the replica in TiFlash at any time.
Consistency
TiFlash provides the same Snapshot Isolation level of consistency as TiKV, and ensures that the latest data is read, which means that you can read the data previously written in TiKV. Such consistency is achieved by validating the data replication progress.
Every time TiFlash receives a read request, the Region replica sends a progress validation request (a lightweight RPC request) to the Leader replica. TiFlash performs the read operation only after the current replication progress includes the data covered by the timestamp of the read request.
Intelligent choice
TiDB can automatically choose to use TiFlash (column-wise) or TiKV (row-wise), or use both of them in one query to ensure the best performance.
This selection mechanism is similar to that of TiDB which chooses different indexes to execute query. TiDB optimizer makes the appropriate choice based on statistics of the read cost.
Computing acceleration
TiFlash accelerates the computing of TiDB in two ways:
- The columnar storage engine is more efficient in performing read operation.
- TiFlash shares part of the computing workload of TiDB.
TiFlash shares the computing workload in the same way as the TiKV Coprocessor does: TiDB pushes down the computing that can be completed in the storage layer. Whether the computing can be pushed down depends on the support of TiFlash. For details, see Supported pushdown calculations.