Deploy TiDB on Azure AKS

This document describes how to deploy a TiDB cluster on Azure Kubernetes Service (AKS).

To deploy TiDB Operator and the TiDB cluster in a self-managed Kubernetes environment, refer to Deploy TiDB Operator and Deploy TiDB on General Kubernetes.

Prerequisites

Before deploying a TiDB cluster on Azure AKS, perform the following operations:

  • Install Helm 3 for deploying TiDB Operator.

  • Deploy a Kubernetes (AKS) cluster and install and configure az cli.

    Note:

    To verify whether AZ CLI is configured correctly, run the az login command. If login with account credentials succeeds, AZ CLI is configured correctly. Otherwise, you need to re-configure AZ CLI.

  • Refer to use Ultra disks to create a new cluster that can use Ultra disks or enable Ultra disks in an exist cluster.

  • Acquire AKS service permissions.

  • If the Kubernetes version of the cluster is earlier than 1.21, install aks-preview CLI extension for using Ultra Disks and register EnableAzureDiskFileCSIDriver in your subscription.

    • Install the aks-preview CLI extension:

      az extension add --name aks-preview
    • Register EnableAzureDiskFileCSIDriver:

      az feature register --name EnableAzureDiskFileCSIDriver --namespace Microsoft.ContainerService --subscription ${your-subscription-id}

Create an AKS cluster and a node pool

Most of the TiDB cluster components use Azure disk as storage. According to AKS Best Practices, when creating an AKS cluster, it is recommended to ensure that each node pool uses one availability zone (at least 3 in total).

Create an AKS cluster with CSI enabled

To create an AKS cluster with CSI enabled, run the following command:

# create AKS cluster az aks create \ --resource-group ${resourceGroup} \ --name ${clusterName} \ --location ${location} \ --generate-ssh-keys \ --vm-set-type VirtualMachineScaleSets \ --load-balancer-sku standard \ --node-count 3 \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true

Create component node pools

After creating an AKS cluster, run the following commands to create component node pools. Each node pool may take two to five minutes to create. It is recommended to enable Ultra disks in the TiKV node pool. For more details about cluster configuration, refer to az aks documentation and az aks nodepool documentation.

  1. To create a TiDB Operator and monitor pool:

    az aks nodepool add --name admin \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 1 \ --labels dedicated=admin
  2. Create a PD node pool with nodeType being Standard_F4s_v2 or higher:

    az aks nodepool add --name pd \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 3 \ --labels dedicated=pd \ --node-taints dedicated=pd:NoSchedule
  3. Create a TiDB node pool with nodeType being Standard_F8s_v2 or higher. You can set --node-count to 2 because only two TiDB nodes are required by default. You can also scale out this node pool by modifying this parameter at any time if necessary.

    az aks nodepool add --name tidb \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 2 \ --labels dedicated=tidb \ --node-taints dedicated=tidb:NoSchedule
  4. Create a TiKV node pool with nodeType being Standard_E8s_v4 or higher:

    az aks nodepool add --name tikv \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 3 \ --labels dedicated=tikv \ --node-taints dedicated=tikv:NoSchedule \ --enable-ultra-ssd

Deploy component node pools in availability zones

The Azure AKS cluster deploys nodes across multiple zones using "best effort zone balance". If you want to apply "strict zone balance" (not supported in AKS now), you can deploy one node pool in one zone. For example:

  1. Create TiKV node pool 1 in zone 1:

    az aks nodepool add --name tikv1 \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 1 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 1 \ --labels dedicated=tikv \ --node-taints dedicated=tikv:NoSchedule \ --enable-ultra-ssd
  2. Create TiKV node pool 2 in zone 2:

    az aks nodepool add --name tikv2 \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 2 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 1 \ --labels dedicated=tikv \ --node-taints dedicated=tikv:NoSchedule \ --enable-ultra-ssd
  3. Create TiKV node pool 3 in zone 3:

    az aks nodepool add --name tikv3 \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 1 \ --labels dedicated=tikv \ --node-taints dedicated=tikv:NoSchedule \ --enable-ultra-ssd

Configure StorageClass

To improve disk IO performance, it is recommended to add mountOptions in StorageClass to configure nodelalloc and noatime. Refer to Mount the data disk ext4 filesystem with options on the target machines that deploy TiKV.

kind: StorageClass apiVersion: storage.k8s.io/v1 # ... mountOptions: - nodelalloc,noatime

Deploy TiDB Operator

Deploy TiDB Operator in the AKS cluster by referring to Deploy TiDB Operator section.

Deploy a TiDB cluster and the monitoring component

This section describes how to deploy a TiDB cluster and its monitoring component on Azure AKS.

Create namespace

To create a namespace to deploy the TiDB cluster, run the following command:

kubectl create namespace tidb-cluster

Deploy

First, download the sample TidbCluster and TidbMonitor configuration files:

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.4.7/examples/aks/tidb-cluster.yaml && \ curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.4.7/examples/aks/tidb-monitor.yaml && \ curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.4.7/examples/aks/tidb-dashboard.yaml

Refer to configure the TiDB cluster to further customize and configure the CR before applying.

To deploy the TidbCluster and TidbMonitor CR in the AKS cluster, run the following command:

kubectl apply -f tidb-cluster.yaml -n tidb-cluster && \ kubectl apply -f tidb-monitor.yaml -n tidb-cluster

After the yaml file above is applied to the Kubernetes cluster, TiDB Operator creates the desired TiDB cluster and its monitoring component according to the yaml file.

View the cluster status

To view the status of the TiDB cluster, run the following command:

kubectl get pods -n tidb-cluster

When all the pods are in the Running or Ready state, the TiDB cluster is successfully started. For example:

NAME READY STATUS RESTARTS AGE tidb-discovery-5cb8474d89-n8cxk 1/1 Running 0 47h tidb-monitor-6fbcc68669-dsjlc 3/3 Running 0 47h tidb-pd-0 1/1 Running 0 47h tidb-pd-1 1/1 Running 0 46h tidb-pd-2 1/1 Running 0 46h tidb-tidb-0 2/2 Running 0 47h tidb-tidb-1 2/2 Running 0 46h tidb-tikv-0 1/1 Running 0 47h tidb-tikv-1 1/1 Running 0 47h tidb-tikv-2 1/1 Running 0 47h

Access the database

After deploying a TiDB cluster, you can access the TiDB database to test or develop applications.

Access method

  • Access via Bastion

The LoadBalancer created for your TiDB cluster resides in an intranet. You can create a Bastion in the cluster virtual network to connect to an internal host and then access the database.

  • Access via SSH

You can create the SSH connection to a Linux node to access the database.

  • Access via node-shell

You can simply use tools like node-shell to connect to nodes in the cluster, then access the database.

Access via the MySQL client

After access to the internal host via SSH, you can access the TiDB cluster through the MySQL client.

  1. Install the MySQL client on the host:

    sudo yum install mysql -y
  2. Connect the client to the TiDB cluster:

    mysql --comments -h ${tidb-lb-ip} -P 4000 -u root

    ${tidb-lb-ip} is the LoadBalancer IP address of the TiDB service. To obtain it, run the kubectl get svc basic-tidb -n tidb-cluster command. The EXTERNAL-IP field returned is the IP address.

    For example:

    $ mysql --comments -h 20.240.0.7 -P 4000 -u root Welcome to the MariaDB monitor. Commands end with ; or \g. Your MySQL connection id is 1189 Server version: 5.7.25-TiDB-v7.5.0 TiDB Server (Apache License 2.0) Community Edition, MySQL 5.7 compatible Copyright (c) 2000, 2022, Oracle and/or its affiliates. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. MySQL [(none)]> show status; +--------------------+--------------------------------------+ | Variable_name | Value | +--------------------+--------------------------------------+ | Ssl_cipher | | | Ssl_cipher_list | | | Ssl_verify_mode | 0 | | Ssl_version | | | ddl_schema_version | 22 | | server_id | ed4ba88b-436a-424d-9087-977e897cf5ec | +--------------------+--------------------------------------+ 6 rows in set (0.00 sec)

Access the Grafana monitoring dashboard

Obtain the LoadBalancer IP address of Grafana:

kubectl -n tidb-cluster get svc basic-grafana

For example:

kubectl get svc basic-grafana NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE basic-grafana LoadBalancer 10.100.199.42 20.240.0.8 3000:30761/TCP 121m

In the output above, the EXTERNAL-IP column is the LoadBalancer IP address.

You can access the ${grafana-lb}:3000 address using your web browser to view monitoring metrics. Replace ${grafana-lb} with the LoadBalancer IP address.

Access TiDB Dashboard

See Access TiDB Dashboard for instructions about how to securely allow access to TiDB Dashboard.

Upgrade

To upgrade the TiDB cluster, execute the following command:

kubectl patch tc basic -n tidb-cluster --type merge -p '{"spec":{"version":"${version}"}}`.

The upgrade process does not finish immediately. You can view the upgrade progress by running the kubectl get pods -n tidb-cluster --watch command.

Scale out

Before scaling out the cluster, you need to scale out the corresponding node pool so that the new instances have enough resources for operation.

This section describes how to scale out the AKS node pool and TiDB components.

Scale out AKS node pool

When scaling out TiKV, the node pools must be scaled out evenly among availability zones. The following example shows how to scale out the TiKV node pool of the ${clusterName} cluster to 6 nodes:

az aks nodepool scale \ --resource-group ${resourceGroup} \ --cluster-name ${clusterName} \ --name ${nodePoolName} \ --node-count 6

For more information on node pool management, refer to az aks nodepool.

Scale out TiDB components

After scaling out the AKS node pool, run the kubectl edit tc basic -n tidb-cluster command with replicas of each component set to desired value. The scaling-out process is then completed.

Deploy TiFlash/TiCDC

TiFlash is the columnar storage extension of TiKV.

TiCDC is a tool for replicating the incremental data of TiDB by pulling TiKV change logs.

The two components are not required in the deployment. This section shows a quick start example.

Add node pools

Add a node pool for TiFlash/TiCDC respectively. You can set --node-count as required.

  1. Create a TiFlash node pool with nodeType being Standard_E8s_v4 or higher:

    az aks nodepool add --name tiflash \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 3 \ --labels dedicated=tiflash \ --node-taints dedicated=tiflash:NoSchedule
  2. Create a TiCDC node pool with nodeType being Standard_E16s_v4 or higher:

    az aks nodepool add --name ticdc \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size ${nodeType} \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 3 \ --labels dedicated=ticdc \ --node-taints dedicated=ticdc:NoSchedule

Configure and deploy

  • To deploy TiFlash, configure spec.tiflash in tidb-cluster.yaml. The following is an example:

    spec: ... tiflash: baseImage: pingcap/tiflash maxFailoverCount: 0 replicas: 1 storageClaims: - resources: requests: storage: 100Gi tolerations: - effect: NoSchedule key: dedicated operator: Equal value: tiflash

    For other parameters, refer to Configure a TiDB Cluster.

  • To deploy TiCDC, configure spec.ticdc in tidb-cluster.yaml. The following is an example:

    spec: ... ticdc: baseImage: pingcap/ticdc replicas: 1 tolerations: - effect: NoSchedule key: dedicated operator: Equal value: ticdc

    Modify replicas as required.

Finally, run the kubectl -n tidb-cluster apply -f tidb-cluster.yaml command to update the TiDB cluster configuration.

For detailed CR configuration, refer to API references and Configure a TiDB Cluster.

Use other Disk volume types

Azure disks support multiple volume types. Among them, UltraSSD delivers low latency and high throughput and can be enabled by performing the following steps:

  1. Enable Ultra disks on an existing cluster and create a storage class for UltraSSD:

    apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: ultra provisioner: disk.csi.azure.com parameters: skuname: UltraSSD_LRS # alias: storageaccounttype, available values: Standard_LRS, Premium_LRS, StandardSSD_LRS, UltraSSD_LRS cachingMode: None reclaimPolicy: Delete allowVolumeExpansion: true volumeBindingMode: WaitForFirstConsumer mountOptions: - nodelalloc,noatime

    You can add more Driver Parameters as required.

  2. In tidb-cluster.yaml, specify the ultra storage class to apply for the UltraSSD volume type through the storageClassName field.

    The following is a TiKV configuration example you can refer to:

    spec: tikv: ... storageClassName: ultra

You can use any supported Azure disk type. It is recommended to use Premium_LRS or UltraSSD_LRS.

For more information about the storage class configuration and Azure disk types, refer to Storage Class documentation and Azure Disk Types.

Use local storage

Use Azure LRS disks for storage in production environment. To simulate bare-metal performance, use additional NVMe SSD local store volumes provided by some Azure instances. You can choose such instances for the TiKV node pool to achieve higher IOPS and lower latency.

For instance types that provide local disks, refer to Lsv2-series. The following takes Standard_L8s_v2 as an example:

  1. Create a node pool with local storage for TiKV.

    Modify the instance type of the TiKV node pool in the az aks nodepool add command to Standard_L8s_v2:

    az aks nodepool add --name tikv \ --cluster-name ${clusterName} \ --resource-group ${resourceGroup} \ --node-vm-size Standard_L8s_v2 \ --zones 1 2 3 \ --aks-custom-headers EnableAzureDiskFileCSIDriver=true \ --node-count 3 \ --enable-ultra-ssd \ --labels dedicated=tikv \ --node-taints dedicated=tikv:NoSchedule

    If the TiKV node pool already exists, you can either delete the old group and then create a new one, or change the group name to avoid conflict.

  2. Deploy the local volume provisioner.

    You need to use the local-volume-provisioner to discover and manage the local storage. Run the following command to deploy and create a local-storage storage class:

    kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-operator/v1.4.7/manifests/eks/local-volume-provisioner.yaml
  3. Use local storage.

    After the steps above, the local volume provisioner can discover all the local NVMe SSD disks in the cluster.

    Add the tikv.storageClassName field to the tidb-cluster.yaml file and set the value of the field to local-storage.

    For more information, refer to Deploy TiDB cluster and its monitoring components

Configure TiDB monitoring

For more information, see Deploy monitoring and alerts for a TiDB cluster.

Collect logs

System and application logs can be useful for troubleshooting issues and automating operations. By default, TiDB components output logs to the container's stdout and stderr, and log rotation is automatically performed based on the container runtime environment. When a Pod restarts, container logs will be lost. To prevent log loss, it is recommended to Collect logs of TiDB and its related components.

Was this page helpful?