📣
TiDB Cloud Essential is now in public preview. Try it out →

Gemini Embeddings



This document describes how to use Gemini embedding models with Auto Embedding in TiDB Cloud to perform semantic searches with text queries.

Available models

All Gemini models are available for use with the gemini/ prefix if you bring your own Gemini API key (BYOK). For example:

gemini-embedding-001

  • Name: gemini/gemini-embedding-001
  • Dimensions: 128–3072 (default: 3072)
  • Distance metric: Cosine, L2
  • Maximum input text tokens: 2,048
  • Price: Charged by Google
  • Hosted by TiDB Cloud: ❌
  • Bring Your Own Key: ✅

For a full list of available models, see Gemini documentation.

Usage example

This example shows how to create a vector table, insert documents, and run similarity search using Google Gemini embedding models.

Step 1: Connect to the database

    from pytidb import TiDBClient tidb_client = TiDBClient.connect( host="{gateway-region}.prod.aws.tidbcloud.com", port=4000, username="{prefix}.root", password="{password}", database="{database}", ensure_db=True, )
    mysql -h {gateway-region}.prod.aws.tidbcloud.com \ -P 4000 \ -u {prefix}.root \ -p{password} \ -D {database}

    Step 2: Configure the API key

    Create your API key from the Google AI Studio and bring your own key (BYOK) to use the embedding service.

      Configure the API key for the Google Gemini embedding provider using the TiDB Client:

      tidb_client.configure_embedding_provider( provider="google_gemini", api_key="{your-google-api-key}", )

      Set the API key for the Google Gemini embedding provider using SQL:

      SET @@GLOBAL.TIDB_EXP_EMBED_GEMINI_API_KEY = "{your-google-api-key}";

      Step 3: Create a vector table

      Create a table with a vector field that uses the gemini-embedding-001 model to generate 3072-dimensional vectors (default):

        from pytidb.schema import TableModel, Field from pytidb.embeddings import EmbeddingFunction from pytidb.datatype import TEXT class Document(TableModel): __tablename__ = "sample_documents" id: int = Field(primary_key=True) content: str = Field(sa_type=TEXT) embedding: list[float] = EmbeddingFunction( model_name="gemini-embedding-001" ).VectorField(source_field="content") table = tidb_client.create_table(schema=Document, if_exists="overwrite")
        CREATE TABLE sample_documents ( `id` INT PRIMARY KEY, `content` TEXT, `embedding` VECTOR(3072) GENERATED ALWAYS AS (EMBED_TEXT( "gemini-embedding-001", `content` )) STORED );

        Step 4: Insert data into the table

          Use the table.insert() or table.bulk_insert() API to add data:

          documents = [ Document(id=1, content="Java: Object-oriented language for cross-platform development."), Document(id=2, content="Java coffee: Bold Indonesian beans with low acidity."), Document(id=3, content="Java island: Densely populated, home to Jakarta."), Document(id=4, content="Java's syntax is used in Android apps."), Document(id=5, content="Dark roast Java beans enhance espresso blends."), ] table.bulk_insert(documents)

          Insert data using the INSERT INTO statement:

          INSERT INTO sample_documents (id, content) VALUES (1, "Java: Object-oriented language for cross-platform development."), (2, "Java coffee: Bold Indonesian beans with low acidity."), (3, "Java island: Densely populated, home to Jakarta."), (4, "Java's syntax is used in Android apps."), (5, "Dark roast Java beans enhance espresso blends.");

          Step 5: Search for similar documents

            Use the table.search() API to perform vector search:

            results = table.search("How to start learning Java programming?") \ .limit(2) \ .to_list() print(results)

            Use the VEC_EMBED_COSINE_DISTANCE function to perform vector search based on cosine distance:

            SELECT `id`, `content`, VEC_EMBED_COSINE_DISTANCE(embedding, "How to start learning Java programming?") AS _distance FROM sample_documents ORDER BY _distance ASC LIMIT 2;

            Custom embedding dimensions

            The gemini-embedding-001 model supports flexible dimensions through Matryoshka Representation Learning (MRL). You can specify the desired dimensions in your embedding function:

              # For 1536 dimensions embedding: list[float] = EmbeddingFunction( model_name="gemini-embedding-001", dimensions=1536 ).VectorField(source_field="content") # For 768 dimensions embedding: list[float] = EmbeddingFunction( model_name="gemini-embedding-001", dimensions=768 ).VectorField(source_field="content")
              -- For 1536 dimensions `embedding` VECTOR(1536) GENERATED ALWAYS AS (EMBED_TEXT( "gemini-embedding-001", `content`, '{"embedding_config": {"output_dimensionality": 1536}}' )) STORED -- For 768 dimensions `embedding` VECTOR(768) GENERATED ALWAYS AS (EMBED_TEXT( "gemini-embedding-001", `content`, '{"embedding_config": {"output_dimensionality": 768}}' )) STORED

              Choose dimensions based on your performance requirements and storage constraints. Higher dimensions can improve accuracy but require more storage and compute resources.

              Options

              All Gemini options are supported via the additional_json_options parameter of the EMBED_TEXT() function.

              Example: Specify the task type to improve quality

              CREATE TABLE sample ( `id` INT, `content` TEXT, `embedding` VECTOR(1024) GENERATED ALWAYS AS (EMBED_TEXT( "gemini/gemini-embedding-001", `content`, '{"task_type": "SEMANTIC_SIMILARITY"}' )) STORED );

              Example: Use an alternative dimension

              CREATE TABLE sample ( `id` INT, `content` TEXT, `embedding` VECTOR(768) GENERATED ALWAYS AS (EMBED_TEXT( "gemini/gemini-embedding-001", `content`, '{"output_dimensionality": 768}' )) STORED );

              For all available options, see Gemini documentation.

              See also

              Was this page helpful?